Pricing Asian Options

Lars B. Nielsen

February 2001



i

Abstract

This Master’s Thesis compares selected methods for pricing Asian
options. Variance reduction methods in relation to Monte Carlo sim-
ulation are also studied. The market model assumed is a basic Black-
Scholes model with a lognormal stock price and a deterministic inter-
est rate. Asian options based on an arithmetic average are difficult to
price since the distribution of the average is unknown. Consequently,
numerical methods and various approximations must be applied.

The pricing methods considered are [Turnbull and Wakeman, 1991|
Levy, 1992], [Milevsky and Posner, 1998], [Vorst, 1992] and last but
not least [Curran, 1994|. From these, two new methods are developed
and one of them turns out to be surprisingly accurate. Nevertheless,
numerical results show that the lower bound suggested by Curran is
the most accurate and reliable method for a wide range of parameter
values. Tt is also demonstrated that the price of the geometric Asian
option is a very efficient control variate for Monte Carlo simulation of
the arithmetic Asian option price.

Keywords: Asian option, average rate option, average price option,
exotic option, path-dependent option, arithmetic average, geometric
average, pricing bounds, option valuation, Edgeworth series expan-
sion, Wilkinson approximation, conditional expectation, Monte Carlo
simulation, control variate, Black-Scholes formula.
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Preface

I have been fascinated by derivatives and in particular options ever since I
first came across them. My interest only grew stronger, when I heard the
news of the collapse of Barings Bank in 1995. Apparently, an employee in
the bank’s Singapore division had lost the enormous amount of £850 million
by unauthorized trading in the futures and options markets [Leeson, 1996].
In the early 1990s, huge losses were suffered by other derivatives market
participants (e.g. Gibson Greetings, Procter and Gamble, Kidder Peabody
and Orange County). These losses left the general impression that derivatives
were very risky financial products. Though understandable, this is certainly
not a fair characterization:

The stories behind the losses emphasize that derivatives can
be used for hedging or speculation; that is, they can be used ei-
ther to reduce risks or to take risks. The losses were experienced
because derivatives were used inappropriately. People who had
an implicit or explicit mandate to manage risks prudently de-
cided to take big bets on the future direction of market variables.
[Hull, 1997]

Here, at the beginning of a new decade, the interest in derivatives is
rapidly increasing and the need for fast and accurate pricing and risk-measuring
methods is ubiquitous. I have decided to focus on a small fraction of this
ongoing task, namely the pricing of Asian options.

Guide to the chapters

Chapter 1 contains a brief introduction to Asian options followed by the pur-
pose of this thesis. In Chapter 2 I take a look at the Black-Scholes model and
present the famous Black-Scholes pricing formula for European call options.
The concepts of arbitrage pricing and risk-neutral valuation are also intro-
duced. Chapter 3 gives a more thorough treatment of Asian options and is the
foundation of the remaining chapters. Chapter 4 reviews the basics of Monte

vii
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Carlo simulation and I study two variance reduction methods, namely the
antithetic method and the control variate method. The pricing algorithm in
[Turnbull and Wakeman, 1991] is the subject of Chapter 5. The distribution
of the arithmetic average is approximated with a lognormal distribution by
means of a generalized Edgeworth series expansion. This is a generalization
of the method in [Levy, 1992]. In Chapter 6 I study the method suggested
by [Milevsky and Posner, 1998|, who use the reciprocal gamma distribution
to approximate the average. I also combine the methods treated so far to
form two new pricing methods. Chapter 7 presents the pricing methods in
[Vorst, 1992], which cover both arithmetic and geometric Asian options. The
geometric option is used to obtain bounds on the price of the arithmetic op-
tion. In Chapter 8 I look at the lower bound developed in [Curran, 1994] and
I suggest how to combine this with an upper bound. The main conclusions
of the thesis appear from Chapter 9.

How to read this thesis

In order to get the full benefit from the thesis a prior knowledge of mathe-
matics and probability theory is implied. Readers already familiar with the
Black-Scholes model and arbitrage pricing can skip Chapter 2 without loss
of continuity. From time to time I refer to prices in US dollars but the con-
clusions apply to any currency. For technical reasons comma has been used
as decimal point in the figures, I hope the reader will bear with this small
inconsistency. Since it is easier to get a good grasp of multiple graphs when
they are in color, all the figures are available at my website

e http://www.lbn.dk/master/

e http://home.imf.au.dk/larsbn/ (Mirror site)

Excel workbooks, Visual Basic code and this thesis in Adobe Portable Doc-
ument Format (PDF) are also open to the public.
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Chapter 1

Introduction

Asian options are written on the average of the underlying asset over a pre-
specified period. Consequently, they are also known as average rate or aver-
age price options. They were introduced in the oil market in the late 1970s
and are now traded in the over-the-counter (OTC) markets all over the world.
Asian options are path-dependent due to the averaging and they are often
classified as exotic options even though the new generation of exotic options
is structurally more complicated.

Compared to standard European options, Asian options have some ob-
vious advantages. First of all, they are often cheaper and better suited for
hedging purposes. It is not unusual for exporting companies to receive cash-
flows in foreign exchange on a regular basis. Buying Asian put options on
the exchange rate is a way to ensure that the company realizes at least the
average exchange rate over the period in question. Secondly, Asian options
reduce the risk of price manipulation near the maturity date, when the un-
derlying is a thinly traded asset or commodity. Asian options are also seen
in combination with corporate bonds, which allows the issuing company to
share profits, if any, with its bondholders. For this to make sense, the profit
of the company should of course depend on the underlying asset of the option.

The downside is that Asian options are hard to price. If the underlying
asset is assumed to have a lognormal distribution as in the Black-Scholes
model (see Chapter 2), then the arithmetic average does not have a known
distribution, since the average is a sum of correlated lognormal random vari-
ables. This complicates the quest of a closed-form pricing expression for
Asian options similar to the famous Black-Scholes pricing formula for Euro-
pean options.

We shall take a closer look at the Asian option in Chapter 3.



2 CHAPTER 1. INTRODUCTION

1.1 Purpose of the thesis

The purpose of this thesis is to:
1. Derive and implement selected methods for pricing Asian options.

2. Compare the accuracy of these methods using Monte Carlo simulation
as yardstick.

More specifically it is my intention to:

e Study the use of Monte Carlo simulation including variance reduction
methods in the context of pricing Asian options.

e Derive the different pricing formulae and all relevant parameters from
the Black-Scholes model.

e Implement the methods in Visual Basic for Excel and calculate option
prices and bounds for different values of key parameters.

e Compare the results with estimates obtained by means of Monte Carlo
simulation to assess the accuracy of the methods.

e Make a comparison of the selected pricing methods with respect to
accuracy and computational aspects.

In order to facilitate the implementation I have restrained the task as
follows. The starting point is a basic Black-Scholes model with a lognor-
mal stock price, a deterministic interest rate and an equivalent martingale
measure. The averaging period is the entire lifetime of the option and the
pricing takes place at the initial time. I only price call options since the
price of the corresponding put option can be obtained from put-call parity
(see e.g. [Bouaziz et al., 1994] or [Vorst, 1992]). Moreover, all options are
of European type with a fixed strike and the average is non-weighted, which
rule out premature redemption as well as flexible and floating strike Asian
options.

I have selected the pricing methods based on their theoretical appeal, ex-
pected accuracy and practicability. It was an invariable demand that I was
able to do all the programming myself and that the amount of time spent on
the programming compared favorably with the benefit. 1 have excluded finite
difference methods among others, because of the time consumption involved,
not because of their lack of relevance. Recommendable partial differential
equation (PDE) references in this context are [Dewynne and Wilmott, 1995al,
[Dewynne and Wilmott, 1995b] and [Rogers and Shi, 1995].



Chapter 2

Preliminaries

Let us start off by taking a look at the famous Black-Scholes model and
see how to price a European call option. This approach offers a good deal
of intuition, which will come in handy later when we introduce the more
complicated Asian option.

2.1 Options

A European option is an asset that gives the holder the right (but not the
obligation) to buy or sell an underlying asset (e.g. a stock) at a predetermined
date, called the maturity date or the expiration date. The term call option
is used to indicate a right to buy, while put option indicates a right to sell.
The strike price or the exercise price is the price at which you buy or sell the
underlying asset at maturity. Thus, a European option is characterized by
its strike price, maturity date, underlying asset and whether it is a call or a
put option.

In contrast, American options can be exercised at more than one date,
sometimes even continuously throughout the life of the option. As we shall
see later, Asian options are options where the exercise price or the stock price
at maturity is replaced by an average of the stock prices.

2.2 Black-Scholes model

Let the price of a stock S; follow the stochastic process

dS, = pSdt + oS, dW, (2.1)
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where p and o are constants and W is a standard Brownian motion.
Likewise, there is a riskless bond with price process

dBt = TBtdt (22)

where 7 is a constant.

Assumptions

e There are no transaction costs or taxes.
e Short selling in unlimited amounts is allowed.

e All assets are divisible, i.e. you can buy or sell any fraction of the
assets.

e The stock pays no dividends.
e There are no arbitrage opportunities.
e Trading takes place continuously.

e The riskless interest rate r is constant and identical for all maturities.

The Black-Scholes model is often called ”lognormal”, because the stock
price process is a Geometric Brownian Motion which implies that S; has a
lognormal distribution (i.e. In S; has a normal distribution). The parameters
1 and o can be interpreted as the ”instantaneous” expected rate of return
and the ”instantaneous” standard deviation of the rate of return. We shall
refer to p as the drift and to o as the volatility.

2.2.1 Black-Scholes option pricing formula

In their now world famous article [Black and Scholes, 1973, Fischer Black
and Myron Scholes gave the following pricing formula for a European call
option.

Theorem 1 The price C(S;,t) at timet of a European call option on a stock
Sy with exercise price K and maturity date T is given by

C(S;,t) = S,®(dy) — Ke "I 9®(dy) (2.3)
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where
In 2t 1?)(T -t
i — n 2t 4 (r +50°)( ) (2.4)
oI —t
and

dgzdl—ﬂ\/T—t (25)

® is the standard normal distribution function. o is the volatility of the stock
and r is the riskless interest rate as defined in the Black-Scholes model above.

Proof. See [Black and Scholes, 1973] =

2.3 Arbitrage pricing

2.3.1 Fundamental PDE

The option pricing formula (2.3) is really the solution to a fundamental par-
tial differential equation (PDE) for pricing derivatives. This PDE is deduced
using a technique called arbitrage pricing. The basic idea is to replicate the
derivative you want to price by trading continuously in the stock and bond.
In the absence of arbitrage, the price of the derivative must be the same as
the price of the portfolio of stock and bond.

Theorem 2 The call option price C(St,t) satisfies the PDE

—rC(z,t) + Cy(x,t) + raCy(z,t) + %O’QIQCMD(I, t) =0,
z €]0,00[, t€][0,T] (2.6)

with boundary condition
c(z,T) = (z— K)*, x€]0,00] (2.7)

C; and Cy are the first order derivatives with respect to the first and second
arguments, while Cy, is the second order derivative with respect to the first
argument.

Proof. See Chapter 6 in [Duffie, 1996]. =
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2.3.2 Risk-neutral valuation

The Black-Scholes formula (2.3) can also be derived using risk-neutral val-
uation. Even though most investors are risk-averse, we can price deriva-
tives as if all investors were risk-neutral. In their book Financial Calculus
[Baxter and Rennie, 1996], Martin Baxter and Andrew Rennie give a bril-
liant exposition of risk-neutral valuation, including Ito’s lemma, equivalent
martingale measures, The Martingale representation theorem and Girsanov’s
theorem. Chapter 3 of the book is a must-read for novices in the area of con-
tinuous time finance.

Theorem 3 The call option price C(Sy,t) is given by
C(St, t) == B_T(T_t)EQ[(ST - K)+] (28)

where @ is the equivalent martingale measure for the discounted stock S;/ By
and E% is expectation under this measure.

Proof. See Chapter 3 in [Baxter and Rennie, 1996]. m



Chapter 3

Asian options

Asian options are options whose payoff depends on some kind of average of
the underlying asset. Stock prices, stock indices, exchange rates, interest
rates and commodities are all examples of underlying assets associated with
Asian options traded in the over-the-counter market. For purely expositional
reasons we assume that the underlying is a dividend-paying stock. The av-
erage can be specified in a number of ways and over various time periods,
which gives rise to many different options within the Asian class.

3.1 Market model

In the rest of this thesis we shall use the Black-Scholes model of Chapter 2
and the underlying assumptions with a single exception. We assume that
the stock pays a continuous dividend rate ¢, so the market consists of a
risky stock S and a riskless bond B, whose prices are given by the stochastic
differential equations

dBt = TBtdt (32)

r is the riskless interest rate, g is the stock dividend, o is the volatility of
the stock price and W, is a standard Brownian Motion under an equivalent
martingale measure (). From now on all expectations are with respect to Q).
According to [Karatzas and Shreve, 1991] the solutions to (3.1) and (3.2) are

Sy = Spexp((r—q— %(72)75 + oWj) (3.3)
B, = Byexp(rt) (3.4)

From (3.3) we see that the stock price is lognormally distributed.

7
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3.2 Pricing

3.2.1 Averages

As mentioned above, there are many ways to specify the average of the stock
prices. Some examples are:
Discrete, arithmetic average

1 n
A=-— ;‘ S, (3.5)

Discrete, geometric average

G =(Iswx (3.6)
i=1
Continuous, arithmetic average
1 T
A=—| 8. 3.7
T ) Sud (3.7)
Continuous, geometric average
1 T
G = —_— In S,d 3.8
expl [ InSudu 39
In the discrete averages there are n prices measured at the time points
0<t1i<ta<..<t,<T (3.9)

Usually, these time points are equidistant, e.g. weekly averaging over 1 year.
If the average only consists of one price at time 7', then we have the Euro-
pean option which is a special case of the Asian option in this respect. The
averaging period can be the entire lifetime of the option or some subset of it.
In the latter case, the option is called forward-starting.

It is also possible to use a weighted average in which case the Asian
option is referred to as flexible. We shall primarily look at the non-weighted,
discrete, arithmetic average, but the geometric average plays an important
role in some of the pricing methods. Since all traded Asian options are based
on discrete averages, the continuous versions are only relevant in theoretical
contexts.
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3.2.2 Risk-neutral valuation

Only call options are considered, so it is implicit in the rest of this thesis
that an option is a call option. The payoff of a fixed strike Asian option
with maturity date T" and strike price K is the maximum of zero and the
difference between the average A and the strike price

max(A — K,0) (3.10)
Using risk-neutral valuation, the arbitrage-free initial price of the option is
C = exp(—rT)E[(A - K)7] (3.11)

where the expectation is with respect to the equivalent martingale measure ()
as mentioned above. In contrast, the floating strike Asian option has payoff

max(Sr — A, 0) (3.12)
so the initial price is
C = exp(—rT)E[(Sr — A)7] (3.13)

We shall not discuss the floating strike option any further.

The price in (3.11) is not straightforward to calculate, since the distribu-
tion of the discrete arithmetic average is unknown. Each of the stock prices
has a lognormal distribution, but unfortunately the sum of correlated lognor-
mal random variables is not lognormally distributed. Thus, researchers have
developed a number of different numerical methods to obtain the price. These
include, but are not limited to, Monte Carlo simulation, approximations of
the distribution of the arithmetic average, modifications to the geometric
average and conditioning on it, binomial methods, numerical solutions to
partial differential equations, Fourier transformation techniques and inver-
sion of non-trivial Laplace transforms. We shall study some of these pricing
methods in the following chapters.
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Chapter 4

Monte Carlo simulation

Monte Carlo simulation (MCS) is basically a method for evaluating inte-
grals. Often, MCS is neither the best nor the fastest way to solve a given
problem, but it is easy to implement and it is applicable to a wide range
of problems. In our context, the input for the simulation algorithm is a set
of random numbers. The literature on random numbers and random num-
ber generators (RNG) is large (see for instance [Glasserman, 1998]), and we
shall only note that an ideal RNG produces a sequence of independent, iden-
tically distributed (iid.) numbers u, us, ... In most applications, the uniform
distribution on [0, 1] is used.

4.1 Standard Monte Carlo

4.1.1 Linear congruential generator

Since true RNGs are difficult to find, a number of deterministic algorithms
have been developed, so-called pseudo-random number generators. We shall
use a linear congruential generator of the form

z, = (ar, 1+b)mode, n=1,2,.. (4.1)
wy = =12, (4.2)
c

where the seed xz is chosen by the user and mod is the modulo function.
The w,’s are independent and U(0, 1) distributed. Choosing good values for
the parameters a, b and ¢ can have a substantial effect on the outcome of the
simulation. [Press et al., 1992] recommends

a=7b=0,c=2" -1 (4.3)

11



12 CHAPTER 4. MONTE CARLO SIMULATION

¢ should be large since the algorithm can produce no more than ¢ different
numbers. A big advantage of this algorithm is that using the same seed
xo leads to exactly the same numbers. This makes it useful for comparing
results across different methods without storing the numbers.

4.1.2 Inverse distribution function method

We have to draw samples from the (log)normal distribution to simulate the
stock prices. Since our random numbers are uniformly distributed we have
to somehow transform them into the normal distribution. A very general
method for this purpose is the inverse distribution function method. It pairs
each of the U(0,1) numbers with the corresponding fractile for the N(0,1)
distribution. E.g. 0.5 is transformed into 0 since

®1(0.5) =0 (4.4)
and 0.975 is transformed into 1.96 since
®1(0.975) ~ 1.96 (4.5)
®~1! is the inverse of the standard normal distribution function ®

o~ (z) = {y | 2(y) = 2} (4.6)

The number ®~!(z) is called the z-fractile of the standard normal distribu-
tion.

Claim 4 The numbers transformed by the inverse distribution function method
are standard normally distributed.

Proof. Let U ~ U(0,1). Then ®~1(U) ~ N(0,1) since

P(@~HU) < 2) = P(®(27'(V)) < ®(x)) = P(U < &(z)) = ®(2)

|

The function ®~! can be approximated very closely with a rational func-
tion which is convenient for programming. Alternatively, many computer
software packages include tools for calculating these values.
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4.1.3 Box-Muller method

Box and Muller have proposed a faster method (see [Johnson et al., 1994])
which has been used in our calculations. Let U; and U, be independent and
uniformly distributed over [0, 1]. Then

X1 = /—2InUj cos(2nUs) (4.7)
Xy = /—2InUjsin(27Us) (4.8)

are independent and standard normally distributed.

To sum up, our procedure so far is to generate an iid. sequence of U(0, 1)
numbers using the linear congruential generator, and then transform the
numbers pairwise to the N(0,1) distribution using the Box-Muller method.

4.1.4 Sampling

Now, we are ready to sample! We know that the solution to

dS; = (r — q)S,dt + oSy dW, (4.9)
is
Sy = Spexp((r —q— %UQ)t +oW}) (4.10)
and that
W, ~ N(0,t) (4.11)
SO
m% ~ N((r—g— %(72)75, o21) (4.12)

Samples St(i) from the distribution of S; are then obtained by setting
, 1 ,
S = Syexp((r — q — 502)75 +oVtZY), i=1,2,...n (4.13)

where Z' ~ N(0,1), i=1,2,...n, independent.
If we need to sample at different time points, i.e. a path, we can advance the
solution as follows

i i 1 hy
Sy = Si), exp((r—q - 5Ot =) + o/t — 1 2"),
J=1,2m, i=12 ..n (4.14)

where 0 < t; < ty < ... < t,, = T. These samples are exact, i.e. there is no
approximation error.
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4.1.5 Simulation

The strong law of large numbers (see [Hoffmann-Jgrgensen, 1994al) states
that

. 1~
St:EZSt()—>E[St] a.s. (4.15)

i=1

This is really the heart of Monte Carlo simulation. We approximate the
expectation of some random variable by sampling from its distribution and
then averaging across replications (samples). S, as defined above is the Monte
Carlo estimator of E[S;]. In this simple case, there is no need for MCS since
we already know the mean of S;. We do need MCS in the more general case
where we want to evaluate E[f(S;)] for some function f with the distribution
of f(S;) unknown.

Let X = (S, Sty, -+, St,,,). We would like to evaluate E[f(X)] by Monte
Carlo simulation for some continuous function f : R™ — R. Let Y = f(X)
and let Y be the simulated values of Y obtained by sampling from the
distributions of S,

YO = £S89 89 80, i=1,2,..,n (4.16)

The Monte Carlo estimator of E[Y] is

! Z y® (4.17)

3

which, by the strong law of large numbers, is converging to the correct mean
value

Y - E[Y] as. asn— oo (4.18)

In other words, the estimator is unbiased. Moreover, the variance of the
estimator is

Var(Y) = Var(- ZY = %Var(z Y®) = Var(Y) (4.19)

- n
=1

These are two characteristics of a good estimator - convergence towards the
correct mean and a variance which decreases as we use more samples.

Now that we have got an estimated price, a natural question would be:
"How accurate is it?”. We would like to calculate a price interval which
contains the true price with an acceptable degree of certainty. The statistical
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concepts of significance level and confidence interval can help us here. The
significance level « is the borderline probability, which separates events that
are significant and non-significant. The implicit assumption is that events
with probability less than o do not occur, i.e. they are not significant. In
this thesis, we always use o = 5%.

A (1 — a) confidence interval is simply an interval which contains the true
value behind the estimation with probability (1 — «). By the central limit
theorem (see [Hoffmann-Jgrgensen, 1994al)

Y — E[Y]
oy/vn

where oy is the standard deviation of YV, ie. 02 = Var(YV) = Var(Y).
Since the sample variance s2- of YV Y@ 'y

— N(0,1) in distribution (4.20)

= 3 (v0 ¥ (4.21)

is converging to o3, we can replace oy with sy

Y — E[Y]
sy /v/n

Proposition 5 A (1 — «) confidence interval for EY] is

— N(0,1) in distribution (4.22)

- Sy Sy

[Y — zl_a/Q%, Y + Zl_a/gﬁ] (423)

where z,, 1s the a-fractile of the standard normal distribution.

Proof. From (4.22) we get

y —
l—a = P(zapn < Y - 5lv) < Z1-a/2)

N Sy ~ Sy
= PY ap—= < ElY| <Y Ca/r——
( 21 /Qﬁ = [ ] SY +21a0 \/ﬁ)
The last equation follows from the symmetry of the fractiles 21_n/2 = —2zq/2.

We conclude that the true mean value E[Y] is in the above confidence interval
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with probability 1 — a. The confidence interval is asymptotically valid as
n — oo, which means that it holds for large values of n. m
A 95% confidence interval is then

~ Sy ~ Sy
Y -196—, Y +1.96— 4.24
[ 9%, ¥+ 196 (4.24)

When reporting estimates, one often includes the sample standard deviation
of the estimator sy /y/n. Doubling this amount is a fast way to form the
interval (4.24) "mentally”, since 2sy/v/n is approximately the halfwidth of
the interval.

4.1.6 Method overview

e Generate uniform random numbers.

Transform the numbers to the standard normal distribution.

Sample from the distribution of the stock prices.

Compute discounted Asian option payoffs.

Obtain an estimate of the option price by averaging across replications.

Compute the sample standard deviation of the estimator and use it to
form a confidence interval.

We would like to shrink the confidence interval as much as possible. This
can be done either by reducing the variance or by increasing the number of
paths. The latter is very expensive in terms of computer processing time, so
we have to look at some variance reduction techniques.

4.2 Variance reduction techniques

4.2.1 Antithetic method

In practice, one often uses 10,000 or 100,000 paths to simulate a price. De-
pending on the quality of the random numbers, this could lead to results
that are not sufficiently precise. Unwanted correlation between the random
numbers can render the simulation outcome totally useless. For instance,
one can imagine that a set of "bad” parameter values for the linear con-
gruential generator will result in either larger or smaller numbers than ex-
pected. We could try to solve this problem by ”balancing” each large num-
ber with a corresponding small number. This is the intuition behind the



4.2. VARIANCE REDUCTION TECHNIQUES 17

antithetic method. Our uniform numbers Ui, Us, ... can be matched with
1—U;,1—Us, ... which are also uniformly distributed over [0, 1] and indepen-
dent. For each path we simulate with Uy, Us, ..., U,,, we generate a second
path with 1 — Uy, 1 — Uy, ...; 1 — Up,. B

Formally, let 61 = g(Ul, UQ, caey Um) and 61 = g(l - Ul, 1-— UQ, ceey 1-— Um)
where g represents the simulation algorithm. We use n pairs of iid. antithetic
outcomes (0;,0;) i=1,2,...,n and a natural unbiased estimator is

6= % > (0: +6;) (4.25)

=1

Calculating the standard deviation is slightly more difficult than usual since
0; and 6; are not independent. We define the average of an outcome pair

_ 9@'“’51'

0;
2 9

i=1,2,...n (4.26)

and we look at 0 as the sample mean of the 6,’s

Sl 1040

i=1

in accordance with (4.25). The sample standard deviation sy is now obtained
from

1 .
2 2
5= — ;1:(91- —9) (4.28)

and an asymptotically valid (1 — «) confidence interval is

[6 — Zla/g%, 0 + Zla/g%] (429)

An obvious alternative to using antithetic variates is simply to double the

number of paths in a standard Monte Carlo simulation. In terms of com-

putational time, these are more or less equivalent since generating random

numbers is much faster than sampling (both methods require 2nm samples).

In order to see which method is better, we compare the variance of the anti-
thetic method

91+51)
9

1 1 ~ 1 ~
= ZVar(Hl) + ZVar(Ql) + 5001}(91, 61)

= %Var(@l) + %C’ov(@l,gl) (4.30)

Var(0,) = Var(
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with the variance of a non-antithetic pair

1 1 1
Var(B %) = Zvar®) + Var(es) + - Con(6r.62)
) 4 4 2
1
= §Var(@1) (4.31)

The conclusion is that if C’ov(@l,gl) < 0 then the antithetic method is pre-
ferred. [Glasserman, 1998] proves that a sufficient condition for antithetic
variables to reduce variance is that the simulation output is monotone in the
random numbers. In our case, the option price is increasing in the standard
normal random numbers. He also gives a useful tip which applies to sampling
from the standard normal distribution. If

Z=oYU), U~U(@0,1) (4.32)
then Z ~ N(0,1) as already shown and due to symmetry
~Z=911-0U) (4.33)

This means that a simulation with normal random numbers 71, Zs, ..., Z,, can
be expanded with antithetic paths obtained from —Z;, —Zs, ..., —Z,,. This
is applicable even if the Z;’s are not generated from the U;’s by the inverse
distribution function method.

4.2.2 Control variates

When making complicated calculations by means of computers, it is always
a good idea to perform a calculation manually in a simple setup and com-
pare the result with the output from the programming. Taking this a step
further inspires us to use some of the information ”hidden” in our calcu-
lations so far to improve our estimates. We could, for instance, price a
standard European call option along with the Asian option and compare the
outcome with the theoretical price obtained from the Black-Scholes formula.
If we observed significant errors, we could correct the estimates with this
new information. This is basically the control variates approach to reducing
variance and thereby improving the simulation results.

More formally, the control variate is a random variable which depends on
the simulation input and has a high degree of correlation with the variable
we want to estimate. Moreover, we must be able to calculate the expectation
of the control variate.
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As before, let X = (Sy,, Sty ., St,) and Y = f(X). We use the function
h to represent the calculation of the control variate W, so

W = h(X) (4.34)
The simulated values of W are
WO = p(SH 89 8D, i=1,2,..n (4.35)
The new estimator is

A

1 <& . .
Y, = — voO _((wl _ g
";1: (W (W1)
1 <& . .
= =N YO w0 4 Blw 4.36
";1 + E[W] (4.36)

The strong law of large numbers tells us that the estimator is unbiased, and
the central limit theorem gives us a (1 — «) confidence interval

¥ Sev

9 Sew
[}/cv - Zl—a/2%7 }/cv + Zl—a/Q_] (437)

vn
where s, is the sample standard deviation obtained from

2 = i - Zn:((yw — WD + EW]) — Ye,)? (4.38)

SC'U
The method can be further improved by using the estimator
. 1 e .
Veii=—Y» YO - pWw® - EW 4.39
DRERL W) (439

for some . The details can be found in [Glasserman, 1998]. The downside
is that more paths are needed to approximate the optional (.

Geometric option

We mentioned earlier that the control variable must have a high degree of
correlation with the variable we want to estimate. This is indeed the case
when pricing Asian arithmetic options with geometric options as control vari-
ates. Furthermore, the geometric average is lognormally distributed, which
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makes it possible to give a closed form expression for the geometric option
price. The discrete geometric average G is

m

G =[5 (4.40)

J=1

so the price of the geometric option is according to Chapter 7

1
Co = exp(—rT){exp(pqa + §aé)®(d1) — K®(ds)} (4.41)
with
1 ,, T+h
e = InSy+ (r—q— 502) 5 (4.42)
2 9, 2n+1)(n+1)
on = o°h on (4.43)
and
_ 2
4 = te —In K 4 o (4.44)
oG
dg = d1 — 0¢ (445)

4.3 Numerical results

Here, we present the results of using Monte Carlo simulation to price Asian
options. We also explain in detail how the different averages, prices etc.
have been calculated, and the Visual Basic code behind it all appears from
Appendix A. In addition to standard Monte Carlo simulation, we have ap-
plied the antithetic method as well as control variates to see which method
performs best.

The price of the Asian option is

C = exp(—rT)Emax(A — K, 0)] (4.46)

where A is the discrete arithmetic average
RS o (4.47)
= 1 L :
=

We use equidistant time points, so

T
t]' :tj,1+h, h = —, t() :O, ] == 1,2,...,m (448)
m
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The sample averages are

1N
A® — ~ Zst(j), i=1,2,...n (4.49)

=1

with S” given by (4.14).

4.3.1 Standard Monte Carlo

Sample option prices are calculated as
CY = exp(—rT)max(AY — K,0), i=1,2,...n (4.50)

which leads us to the Monte Carlo estimator

vl
C==> c% 451
- 2 (4.51)

The sample variance s is
1 &, o A
2 __ (%) 2

= cv-C 4.52
&= -c) (452

i=1

and a 95% confidence interval is

A Sc A Sc
C—-196—, C+1.96—= 4.53
€~ 19652, €+ 19652 (153
Table 4.1 and Table 4.2 contain option prices and standard deviations for
different values of the stock price volatility o and the maturity 7" of the
option. The other parameters of interest have been fixed at

K =100, m=12, n=>50000, ¢=0, r=005 Sy=100 (4.54)

which means that both the initial stock price and the strike price are 100, the
number of prices in the average is 12 (corresponding to monthly averaging
when T' = 1), the stock pays no dividends, the interest rate is 5% and we
have simulated with 50,000 paths. The last three columns in the tables
represent the simulated price of a European option, the standard deviation
of the estimator and the theoretical Black-Scholes value. The European
option has been included to give us an idea of the accuracy of the Monte
Carlo estimates. If the simulated European prices are significantly different
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from the theoretical prices, we should expect that the Asian prices are also
imprecise.
The Monte Carlo estimator of the European option price is

s I a0
Cp = ;‘ cl (4.55)

where the samples are

Cp = exp(—rT)max(Sy) — K,0), i=12..n (450)

The sample variance s2, is

(£

> (Cf - Cp)? (4.57)

i=1

1
n—1

2 _
SE_

and a 95% confidence interval is
A SE
[Cg — 1.96 NG
The theoretical price C is obtained from (2.3).

It is obvious from Table 4.1 that the standard deviations are too large to
be of any good. As we would expect, both the option price and the standard
deviation are increasing in the stock price volatility. This can be seen in Fig-
ure 4.1 where we also see that the spread between the European and Asian
prices increase as volatility increases. The Asian price is lower than the Eu-
ropean price mainly because the averaging tends to lower the variance of the
terminal payoff, and hence lower the option price. Figure 4.1 also shows the
endpoints of the 95% confidence interval for Cr as well as the Black-Scholes
price. Cr has been subtracted from all values to make the graphs distin-
guishable from each other. The true price is inside the confidence interval,
but the interval is so wide that we really can’t use our estimates to anything.
As can be seen, the Monte Carlo simulation consistently underprices the Eu-
ropean option, which could indicate that our random numbers are not as
uncorrelated as we would wish.

Table 4.2 is similar to Table 4.1 but this time we have priced options with
maturities from half a year up to five years. It is evident that both prices and
standard deviations increase as maturity increases. This is also illustrated in
Figure 4.2. The confidence intervals are too wide for our purpose, so we could
consider increasing the number of paths. From (4.58) we see that doubling
the precision requires four times as many paths. If we demand that the
confidence interval is no wider than 0.01, i.e. 1 cent, then we need more than
250 million paths to price the option with ¢=0.50 in Table 4.1. This would
probably take forever on a standard PC, so variance reduction methods are
indeed necessary.

~ SE
1.96— 4.
. G+ 1962 (4.58)
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(o T C SC/\/ﬁ CE SE/\/H CE
0.05 1 292 0.0114 5.28 0.0196 5.28
0.10 1 3.89 0.0200 6.80 0.0344 6.80
0.15 1 499 0.0287 859 0.0495 8.59
0.20 1 6.13 0.0377 10.44 0.0654 10.45
0.25 1 7.28 0.0471 1232 0.0821 12.34
0.30 1 843 0.0568 14.20 0.0998 14.23
0.35 1 9.58 0.0670 16.09 0.1185 16.13
0.40 1 10.73 0.0776 1797 0.1383 18.02
0.45 1 11.88 0.0886 19.84 0.1593 19.91
0.50 1 13.03 0.1001 21.70 0.1815 21.79

23

Table 4.1: Monte Carlo option prices for different volatilities. K=100, m=12,
n=>50000, ¢=0, r=0.05, Sy=100.

(o

T C

sc/Vn

Cp

/v

Cp

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

0.5 4.09
1.0 6.13
1.5 7.80
2.0 9.28
2.5 10.62
3.0 11.85
3.5 13.00
4.0 14.08
4.5 15.09
5.0 16.05

0.0256
0.0377
0.0476
0.0561
0.0638
0.0708
0.0773
0.0835
0.0892
0.0947

6.88
10.44
13.43
16.10
18.57
20.89
23.08
25.17
27.16
29.08

0.0435
0.0654
0.0837
0.1000
0.1151
0.1293
0.1428
0.1558
0.1683
0.1804

6.89
10.45
13.44
16.13
18.60
20.92
23.12
25.21
27.22
29.14

Table 4.2: Monte Carlo option prices for different maturities. K=100, m=12,
n=50000, ¢=0, r=0.05, Sy=100.
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Volatility (sigma)
Figure 4.1: Top: Monte Carlo estimates for Asian and European option

prices. Bottom: 95% confidence intervals and theoretical European option
prices. All values subtracted by Monte Carlo estimate.
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—&— Asian MC —m— European MC
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Figure 4.2: Top: Monte Carlo estimates for Asian and European option
prices. Bottom: 95% confidence intervals and theoretical European option
prices. All values subtracted by Monte Carlo estimate.
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4.3.2 Antithetic method

For each C in (4.50) we generate a C®) by using Z" = —Zb  j =
1,2, ...,m to simulate the stock prices. The Monte Carlo estimator is

1IN0 o0

i=1

and a 95% confidence interval is

A S¢ A Sc¢
C — 196z, C+1.96%] (4.60)

with

"ol Lo
! Z(C ;C —C)? (4.61)

The European option prices are simulated in a similar fashion.

Table 4.3 and Table 4.4 contain simulated option prices for different
volatilities and maturities. The same remarks as for the standard method
above apply. It is worth noting that the Asian prices have increased by up to
7 cents (see also Figure 4.3) whereas the European prices only have increased
by up to 2 cents. Since the standard method underpriced the European op-
tions, it might have underpriced the Asian options as well, so we expect that
the higher antithetic estimates of the Asian prices are better. Even though
the antithetic method has reduced the standard deviations by a factor two,
we are still not satisfied with the accuracy. We postpone our final conclusion
regarding the antithetic method until we have seen how the other variance
reduction method performs.

4.3.3 Control variates

In addition to (4.49), the sample geometric averages are

GO =[S, i=1,2,...n (4.62)

J
Jj=1

and sample geometric option prices are calculated as

C’g) = exp(—rT) max(G? — K,0), i=1,2,...n (4.63)
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g T C SC/\/ﬁ CE SE/\/H CE
0.05 1 293 0.0028 5.28 0.0044 5.28
0.10 1 390 0.0079 6.80 0.0133 6.80
0.15 1 5.01 0.0131 859 0.0226 8.59
0.20 1 6.15 0.0186 10.44 0.0325 10.45
0.25 1 731 0.0243 1232 0.0431 12.34
0.30 1 847 0.0303 14.21 0.0545 14.23
0.35 1 9.63 0.0367 16.10 0.0666 16.13
0.40 1 10.79 0.0434 17.98 0.0797 18.02
0.45 1 1195 0.0506 19.85 0.0936 19.91
0.50 1 13.10 0.0581 21.72 0.1086 21.79

Table 4.3: Monte Carlo option prices for different volatilities.
method. K=100, m=12, n=50000, ¢=0, r=0.05, Sy=100.

o

T C

sc/Vn

Cp

/v

Cp

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

Table 4.4: Monte Carlo option prices for different maturities.
method. K=100, m=12, n=50000, ¢=0, r=0.05, S;=100.

0.5 4.11
1.0 6.15
1.5 783
2.0 931
2.5 10.66
3.0 11.89
3.5 13.05
4.0 14.13
4.5 15.15
5.0 16.12

0.0127
0.0186
0.0232
0.0272
0.0307
0.0340
0.0370
0.0399
0.0426
0.0452

6.88
10.44
13.43
16.11
18.58
20.89
23.08
25.17
27.16
29.08

0.0218
0.0325
0.0414
0.0495
0.0569
0.0640
0.0708
0.0774
0.0838
0.0901

6.89
10.45
13.44
16.13
18.60
20.92
23.12
25.21
27.22
29.14

27

Antithetic

Antithetic
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—&— Asian MC antithetic - MC standard
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Figure 4.3: Difference between Monte Carlo estimates with and without

variance reduction.
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whereas the true geometric option price C¢ is given by (4.41).
The Monte Carlo estimator of the Asian option price is then

n

N 1 . .
C==N"00_c9 ¢ 4.64
- ; o T Ca (4.64)

and a 95% confidence interval is

A Sc A S¢
[C'—1.96 NG C +1.96 \/ﬁ] (4.65)
with
2 1 - (1) (@) AN\ 2
Sc_n_1z(0 —CY +Cq—C) (4.66)

i=1

Likewise, the Monte Carlo estimator of the geometric option price is

. 1 e
Co==% ¥ 4.67
o320 (a.67)
The sample variance is
1 &) A
s =——=>(C¢ ~ Co)? (4.68)

so a 95% confidence interval is

S A S
7 Ca + 1.96%] (4.69)

Table 4.5 and Table 4.6 show simulated option prices for the Asian option
and the geometric option as well as the theoretical geometric price. The prices
are close for small volatilities and small maturities (see Figure 4.4 and Figure
4.5). The geometric options are cheaper than the Asian options because the
geometric average is always lower than the arithmetic average. The simu-
lation has consistently underpriced the geometric option, which again could
indicate correlation between the random numbers. The standard deviations
of C' have been reduced by a factor 9 or more which has dramatically nar-
rowed the confidence intervals as seen in Figure 4.4 and Figure 4.5. From
these it is also evident that the estimates from the antithetic method and
the control variates method are almost the same.

[C — 1.96
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o T C Sc/\/ﬁ CG Sg/\/ﬁ CG
0.05 1 293 0.0001 2.89 0.0113 290
0.10 1 390 0.0004 3.82 0.0197 3.84
0.15 1 5.01 0.0009 4.86 0.0281 4.88
0.20 1 6.16 0.0016 591 0.0366 5.94
0.25 1 731 0.0024 6.96 0.0453 6.99
0.30 1 847 0.0035 7.98 0.05642 8.02
0.35 1 9.64 0.0049 899 0.0632 9.04
0.40 1 10.80 0.0065 997 0.0725 10.03
0.45 1 11.96 0.0085 10.92 0.0820 11.00
0.50 1 13.11 0.0107 11.85 0.0917 11.94

Table 4.5: Monte Carlo option prices for different volatilities. Control vari-
ates. K=100, m=12, n=>50000, ¢g=0, r=0.05, S,=100.

g T C Sc/\/ﬁ CG Sg/\/ﬁ CG
020 0.5 4.11 0.0007 3.99 0.0250 4.01
020 1.0 6.16 0.0016 591 0.0366 5.94
020 1.5 7.84 0.0025 7.47 0.0457 7.50
020 2.0 932 0.0034 881 0.0535 8.85
0.20 2.5 10.66 0.0045 10.01 0.0604 10.05
0.20 3.0 11.90 0.0055 11.10 0.0666 11.15
0.20 3.5 13.05 0.0066 12.10 0.0722 12.16
0.20 4.0 14.14 0.0078 13.03 0.0774 13.09
0.20 4.5 15.16 0.0090 13.90 0.0822 13.96
0.20 5.0 16.12 0.0102 14.71 0.0867 14.77

Table 4.6: Monte Carlo option prices for different maturities. Control vari-
ates. K=100, m=12, n=50000, ¢g=0, r=0.05, Sy=100.
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Figure 4.4: Top: Monte Carlo option prices of Asian options with arithmetic
and geometric averages. Control variates. Bottom: 95% confidence intervals
(estimate subtracted) and difference between antithetic method and control
variates.
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Figure 4.5: Top: Monte Carlo option prices of Asian options with arithmetic
and geometric averages. Control variates. Bottom: 95% confidence intervals
(estimate subtracted) and difference between antithetic method and control

variates.
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4.3.4 Conclusion

We have used Monte Carlo simulation to price various Asian and European
options. From the simulations we conclude that the standard method is not
accurate enough and that increasing the number of paths is not computation-
ally feasible. This is in accordance with the results in [Kemna and Vorst, 1990].
The random numbers generated from the linear congruential generator and
transformed by the Box-Muller method showed signs of correlation, so using
more sophisticated methods to generate random numbers could prove advan-
tageous. We applied two different variance reduction methods which both
gave very good estimates, but the antithetic method did not reduce the stan-
dard deviations to an acceptable level. In contrast, using the Asian option
based on a geometric average as a control variate for the arithmetic Asian
option turned out extremely well due to the strong correlation between the
two kinds of averages. We obtained 95% confidence intervals only a few cents
wide even for large volatilities and large maturities.
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Chapter 5

Turnbull and Wakeman
algorithm

[Turnbull and Wakeman, 1991] price Asian options by approximating the dis-
tribution of the arithmetic average with a lognormal distribution. Similar
methods have been used by [Levy, 1992] and others, but Turnbull and Wake-
man use a generalized Edgeworth series expansion which also takes differ-
ences in skewness and kurtosis into account. This approach relies on the fact
that all the moments of the arithmetic average can easily be calculated even
though the distribution of the average is unknown. The algorithm is very
fast and, as we shall se, it is relatively precise.

5.1 Generalized Edgeworth series expansion

The generalized Edgeworth series expansion is a technique for approximating
a distribution function F' (the true distribution) with an alternative distri-
bution function G (the approximating distribution). It has similarities to
the well-known Taylor series expansion of an analytical function. We assume
that F' and G have continuous density functions f and g and that the random
variable X has distribution F.

Define the m’th moment

am(F) = /fnxmfcwdx

o

= EX™, m=12.. (5.1)

35
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and the m’th central moment

() = [ (@ — o (F)" f(a)da

r(F) = on(F) = E[X] (5-3)
kao(F) = po(F) = E[(X — E[X])’] (5
ka(F) = py(F) = E[(X — E[X])’] (5.5
ka(F) = py(F) = 3(py(F))*

= E[(X - E[X])"] - 3(E[(X — E[X]))* (5.6)

k1 is the mean, ko is the variance, k3 is a measure of skewness and k4 is a
measure of kurtosis. We define a,,,(G), u,,(G) and k,,(G) likewise as above.

Theorem 6 Assume that the first five moments of both distributions exist
and that G is five times differentiable. We can then expand f(z) in terms of
g(x) as follows

ko (F) — k2(G) d?g k3(F) — k3(G) d3g

flz) = g(z)+ ol @(m) B , 3i E(I)
L ma(F) — (@) +Z(m(F) — k(@) %(9@) te(x)  (5.7)

where €(x) is a residual error term and k1 (G) has been set equal to ki (F).

Proof. See the Appendix in [Jarrow and Rudd, 1982]. =

Hence it appears that the difference between f(x) and g(x) is expressed
as three terms plus an error term. The first term adjusts for difference in
variance between the two distributions, while the second and third terms
adjust for difference in skewness and kurtosis. The weighting factors are
respectively the second, third and fourth derivatives of g with respect to x.

The magnitude of the error term is of course very interesting but unfor-
tunately nothing can be said about this in general. It seems plausible though
that the more cumulants we include, the better the approximation is. We
shall take a closer look at this problem in Section 5.3.
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5.2 Algorithm

5.2.1 Model
As before, the stock price is given by

and the arithmetic average is

1 n

where the averaging dates are

T
n

. i=1,2..n (5.10)

The option payoff at maturity 7" is max{A — K,0}, so the option price at
time 0 is

C = exp(—rT)E[(A - K)']
— exp(— / K fa(2)da

— exp(— / (z)dx (5.11)

K

8

88

where f4 is the true, but unknown, density function of A. We could now
substitute f(z) from (5.7) for f4(z) in (5.11), but for technical reasons we
shall first rewrite the average.

Define the relative stock price from time ¢;_; to t;

St

Ri = - 5 1= 1,2,...,71,, to =0 (512)
St
and define
Ln+1 = 1 1
Li = 1+RiLi+17 1 :2,3,...,77, (514)

Now, we can write

St.; = Stl',lRi = SthQ...RZ', 1= 2, 3, N (515)
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and the average can be written as

1 n
A:;%;&

1
- g(stl + SthQ + St1R2R3 + + SthQ...Rn)
St,

= - (1—|—R2+R2R3+.-.+R2---Rn)
S,
= 1+ R(1+ Rs(1+..(1+ Ra))))
n
= DL, (5.16)

We want to get rid of the deterministic constant, so we define the scaled
average Y

Y =2 A=R\L, (5.17)
So
and the scaled strike k
n
k=—K 5.18
. (515)

5.2.2 Moments and cumulants of the true distribution

In order to apply the Edgeworth series expansion (5.7) to the distribution
of Y, we have to calculate the cumulants of Y which, in turn, requires us to
calculate the moments of Y. From (5.8), we know that

1
Sy, = Si,_,exp((r —q— 502)h +o(W,, = W,._,)), i=12,...,n (5.19)

i

so R; is lognormally distributed

1
log Ry ~ N((r —q— 502)h, o?h) (5.20)
and its moments are
1 1
B[R] = exp((r — ¢ — 502)hm + 5thmQ), m=12,.. (5.21)
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As the Brownian Motion has independent increments, R; and Ly are inde-
pendent, and

ElY™ = E[(R1Ly)"] = E[RT'|E[L}], m=1,2,.. (5.22)
From (5.14) we get
E[L;n] :E[(1+RZLZ+1)m], 7;:2,3,...,7’1,, m = 1,2,...

As shown in Appendix B, the first four moments of L; are

E[L;] E[1+4 R;L;11] (5.23)
BIL]] = 1+ E[R/|E[L}},] + 2B[R)|E|L;1] (5.24)
B[L] = 1+ E[R]E[L},,] + 3E[R}|E[L},,] + 3E[R;]E[Li 1] (5.25)
E[Lj] = 1+ E[R{E[L;,] +4E[R]]E[L} ;] + 6E[R{]E[L,4]

HAE[R)E[Lisi] (5.26)

By definition of L;, it is necessary to calculate these moments recursively
starting with ¢ = n and ending with ¢ = 2.
The cumulants can be calculated from the moments as follows

ki (F) = E[Y] (5.27)
ko(F) = E[Y? - E[Y]? (5.28)
k3(F) = E[Y?]+2E[Y]? - 3E[Y?E[Y] (5.29)
ki(F) = E[Y*) = 6E[Y]* - 4E[Y?|E[Y]
+12E[Y3E[Y]? - 3E[Y?? (5.30)

The details can be found in Appendix B.

5.2.3 Approximating distribution

[Turnbull and Wakeman, 1991] have chosen the lognormal distribution as ap-
proximating distribution due to its widespread use in modern finance. By
construction, the first moment of the approximating distribution G is set
equal to the first moment of the true distribution F, cf. Theorem 6. The
lognormal distribution is characterized by two parameters, so we need an-
other equation to ”calibrate” the distribution. There are several ways to do
this, one of which is to set the second moments of the two distributions equal,
ie.

OéQ(G) = OéQ(F) (531)
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Since a1 (G) = ay(F'), we can also express the above in terms of the cumulants
K,Q(G) = /ﬂ?Q(F) (532)

Intuitively, this should result in a good fit to the true distribution. We
expect that matching the first two moments and adjusting for some of the
higher moments will explain a substantial part of the influence which the
distribution of the average has on the option price.

We have already seen how to calculate the moments of the true distribu-
t120n, and the moments of the lognormal distribution with parameters v and
A” are

anm(G) = / z™g(z)dr = exp(vm + %)\QmQ), m=1,2,.. (5.33)

oo

To find the parameters of the approximating distribution, we match the first
two moments and solve the following system of equations

an(F) = mmy+%V) (5.34)
®(F) = exp(2v +2)\?) (5.35)

As shown in Appendix B, the solution is

v o= 21n041(F)—%ln042(F) (5.36)
N = Inay(F) —2Inay(F) (5.37)

Once we have calculated the moments of the true distribution, we can cal-
culate the parameters above, which fully determine the approximating dis-
tribution. The next step is to calculate the moments a,,(G) from (5.33)
and then the cumulants k,,(G), which are obtained in a manner similar to
(5.27)-(5.30).

The density function g(x) of the lognormal distribution with parameters
v and \? is

1 1 —(v —Inx)?
= — exp(—————),
S Worr i Y
From (5.7) it seems as if we need to find the first four derivatives of this

function, but it turns out that we only need two of them. The first derivative
of g with respect to z is

z>0 (5.38)

~1), >0 (5.39)
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and the second derivative is

d*g 1 v—Inz v—1Inzx 1

@ =@ (- DEF T~ ) w20 (540

Once again the details appear from Appendix B.

5.2.4 Option price

We can rewrite (5.11), so the option price is

C = exp(—rT)E[(A- K)7]

= exp(—rT)%E[(Y — k)"

S o, @]
= exp(—rT);O/ (x — k) f(x)dx (5.41)
k
where f is the true density function of Y.

Lemma 7 Applying the Edgeworth series expansion (5.7) to the integral in
(5.41) leads to

[ e-breis = [T@- by

/ﬂ?Q(F)—K,Q(G) Kg(F)—Kg(G)@

* 21 g(k) = 31 iz )
+/€4(F) — r4(G) +Z("»2(F) — K2(G)) %(k}
te(k) (5.42)

where G is the approzimating lognormal distribution.

Proof. Substituting f(z) from (5.7) for f(z) in

| =i

gives integrals of the type

/ (x—k)g(x)dx, m=2,3,4
k

dxz™
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Using integration by parts, we get

[e-nEwd = e -HE @) - k- 0T
S
= T )t T
m—2 m—2
(i e 175}
- dwm—g( )

where all the limits are zero, because the lognormal density g(z) tends to
zero in the following sense

lim z“g(z) =0, VYu>0

T—00

which also makes the derivatives tend to zero. Now, (5.42) follows easily. m

The next theorem tells us how to calculate the approximate option price.

Theorem 8 The Turnbull and Wakeman price at time 0 of the Asian option
with maturity T and strike K s

c = exp(—rT)%{eXp(V + %A2)<I>(d1) ~ b (dy)
+K,2(F)—K,2(G) Iig(F)—K,g(G)@

+/§4(F) — k4(G) —I—Z(fiz(F) — HQ(G))Q %(k)} (5.43)

where ® is the standard normal distribution function and

2_
dy = w (5.44)
dy = di— (5.45)

Note that the term with the second cumulants in (5.43) equals zero in our
setup (by choice of approzimating distribution) and can therefore be removed
from the expression.
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Proof. As shown below

v+ A —Ink v—1Ink
vEATIR e

/koo(x — k)g(x)dx = exp(v + %)\2)@(

Combining this with (5.41) and (5.42) gives the result in (5.43).

First, we split the integral into two integrals

/ (x — k)g(x)dx = / xg(z)dr — k/ g(x)dx
k k k
Using the change of variables

_1/+)\2—lnx dy 1
v= X dr A

and the density (5.38), the first integral is

e 11 —(v —Inx)?
/kxg(x)dx = /k x/\\/ﬁgexp(2—)\2)d:p

< 1 1 lv—Inz,
—_—— —= d

e 1 1
= [, e+ A = ) exp(— 5 = M)y

+A2;1nk \ 27 2
viA2-Ink
/ . ( L e g n My)d
= exp(—=y“ — = v —
. o P 2?/ 5 Y y)ay
1 viA2—Ink 1 1
= ex V—|——/\2/ exp(—=y?)d
p(v +5A%) N Nors p(=5y7)dy
1 N —Ink
= exp(v+ —AQ)‘IJ(H—H)
2 A
Likewise, we make the change of variables
v—Inx dz 1

z= =

N dr A\
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and the second integral is then

/koog(x)dx _ /;Llexp(_(”_—w)dx

which completes the proof. m

5.2.5 Method overview

The Turnbull and Wakeman algorithm for pricing Asian options can be sum-
marized as follows

e Calculate the first four moments of the true distribution of the (scaled)
average stock price.

e Match the first two moments of the approximating lognormal distribu-
tion to the true distribution.

e (Calculate the third and fourth moments of the approximating distri-
bution.

e Find the first and second derivatives of the approximating density func-
tion.

e (Calculate the first four cumulants of both distributions.

e (Calculate the Asian option price using the generalized Edgeworth series
expansion.
5.3 Numerical results

Table 5.1 contains option prices for different values of stock price volatility o,
strike price K, number of prices in the average n and maturity 7. The Monte
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Carlo simulation has been carried out with 50,000 paths and the geometric
option price as control variate, cf. Chapter 4. Unless otherwise mentioned
the stock dividend, the interest rate and the initial stock price have been
fixed at

q=0, r=0.05 Sy=100 (5.46)

The Turnbull and Wakeman price is within 1 cent of the Monte Carlo estimate
for all values of K and n and for small values of ¢ and 7. The accuracy
deteriorates for volatilities larger than 30% p.a. and especially for maturities
longer than léyears.

We stated in Section 5.1 that nothing can be said about the error term
g(z) in general. In the special case where all the moments exist (as in our
setup), we have

en(z) — 0 uniformly as N — oo (5.47)

where N represents the number of terms included in the series expansion
(see [Jarrow and Rudd, 1982]). This is very reassuring but for all practical
purposes N is finite, so how does it influence the accuracy if we add or remove
correction terms? To investigate this we have included the components of
the pricing expression (5.43) in Table 5.2. The notation is

S() I<,3(F) — Iﬁg(G)@

(),

term2 = —exp(—rT)

n 3! dx
term3 = eXp(—TT)%M(F) — (@) +j!(/€2(F) — ra(G)) %(/ﬂ),
do= By, =T, ays- (@
c1j21 — k4(F) — k4(G) +3(52(F) — ko(@))? (5.48)

Note that the correction term term2 is small (less than 3 cents) except for
large volatilities whereas term3 plays an important role for large values of
both o and T'. This is a consequence of a considerable difference in kurtosis
between the true distribution and the approximating lognormal distribution
as seen in the column labelled ¢4/24.

The last two columns of Table 5.1 show the Turnbull and Wakeman price
with no correction for differences in fourth cumulants (TW3c) and with no
corrections at all (Levy). The last column is labelled Levy because this
pricing method is equivalent to the one used in [Levy, 1992]. He also refers
to it as the ” Wilkinson approximation” (setting the first two moments equal).
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Figure 5.1 and Figure 5.2 display these prices less the Monte Carlo estimate
for different values of o, T" and K.

Figure 5.1 shows that the Turnbull and Wakeman algorithm performs
better than the other two and that not adjusting for cumulant differences
(Levy) is better than only adjusting for third cumulants (TW3c). It also
appears from Figure 5.1 that the TW algorithm is very sensitive to increases
in maturity and should definitely not be used for maturities longer than 3
years. For T" > 3.5 both Levy and TW3c perform better (but not well!)
which is due to the large downward kurtosis correction term3, cf. Table 5.2.

Figure 5.2 is very interesting. We see that the TW price is within 1 cent
of the MC estimate for all strike prices whereas TW3c varies up to 2 cents
and Levy varies up to 3 cents. It depends on K which method is the better
one, and hence we should not use (5.47) in combination with intuition to say
that adding more correction terms gives better accuracy. When the option is
deep-in-the-money TW overprices it and then underprices it as K is getting
closer to Sy. This changes again when the option is out-of-the-money. To
some extent, TW3c behaves in the opposite way while Levy is too large for
in-the-money and at-the-money options and too small for out-of-the-money
options. The explanations of these fluctuations can be found in Table 5.2
in the columns labelled dg and d*g. The variations of the first and second
order derivatives of the approximating density function cause the correction
terms term2 and term3 to change sign and magnitude. Figure 5.2 shows
that term?2 is negative when K < Sy and positive when K > Sy. termd is
negative when K is near Sy and positive elsewhere.

Finally, we note from Table 5.1 that increasing the number of prices in the
average n does not affect the accuracy of the Turnbull and Wakeman algo-
rithm, but the option prices decrease towards the continuous-time-averaging
prices.
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o K n T MC sd TW TW3c Levy
0.05 100 12 1 293 0.0001 2.93 293 293
0.10 100 12 1 390 0.0004 3.90 391 3091
0.15 100 12 1 5.01 0.0009 5.01 5.02  5.02
0.20 100 12 1 6.16 0.0016 6.15 6.17  6.17
0.25 100 12 1 731 0.0024 7.30 735 734
0.30 100 12 1 847 0.0035 8.46 8.53  8.52
0.35 100 12 1 9.64 0.0049 9.61 9.74  9.70
0.40 100 12 1 10.80 0.0065 10.77  10.95 10.89
0.45 100 12 1 11.96 0.0085 11.92 12.18 12.08
0.50 100 12 1 13.11 0.0107 13.07  13.44 13.28
0.20 100 12 0.5 4.11 0.0007 4.11 412 4.12
0.20 100 12 1.0 6.16 0.0016 6.15 6.17  6.17
0.20 100 12 1.5 7.84 0.0025 7.83 787  T.87
0.20 100 12 2.0 9.32 0.0034 9.30 9.36  9.37
0.20 100 12 2.5 10.66 0.0045 10.62 10.72  10.73
0.20 100 12 3.0 11.90 0.0055 11.83 11.98 11.99
0.20 100 12 3.5 13.05 0.0066 12.95 13.15 13.16
0.20 100 12 4.0 14.14 0.0078 13.99 14.25 14.26
0.20 100 12 4.5 15.16 0.0090 14.96 15.29 15.30
0.20 100 12 5.0 16.12 0.0102 15.86 16.27 16.29
0.20 100 12 1 6.16 0.0016 6.15 6.17  6.17
0.20 100 24 1 596 0.0016 5.96 598  5.98
0.20 100 36 1 590 0.0016 5.89 591 591
0.20 100 48 1 586 0.0016 5.86 5.88  5.88
0.20 100 60 1 584 0.0016 5.84 5.86  5.86
020 70 12 1 31.16 0.0015 31.16  31.16 31.16
020 175 12 1 26.42 0.0015 26.42 2641 26.42
0.20 80 12 1 21.72 0.0015 21.72  21.71 21.73
0.20 85 12 1 17.16 0.0015 17.16 17.15 17.19
0.20 90 12 1 1292 0.0015 12.91 12.92  12.95
020 95 12 1 9.19 0.0015 9.18 9.20 9.22
0.20 100 12 1  6.16 0.0016 6.15 6.17  6.17
0.20 105 12 1 387 0.0016 3.87 3.89 387
0.20 110 12 1 229 0.0015 2.30 230  2.28
0.20 115 12 1 1.28 0.0015 1.28 1.28  1.25
0.20 120 12 1 0.67 0.0013 0.68 0.67  0.65
0.20 125 12 1 034 0.0012 0.34 0.33 0.32
0.20 130 12 1 0.16 0.0010 0.16 0.16 0.15

47

Table 5.1: Asian option prices for different values of volatility, strike price,
number of averaging times and maturity. MC: Monte Carlo simulation. sd:
Standard deviation of estimator. TW: Turnbull and Wakeman price. (Con-
tinued in Table 5.2).
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c K n T term2 term3 c3/6 dg c4/24  d’g
0.05 100 12 1 0.00 0.00 0.0001 1.6724 0.0000 -1.7742
0.10 100 12 1 0.00 0.00 0.0021 0.2330 0.0003 -0.8139
0.15 100 12 1 0.00 -0.01 0.0109 0.0485 0.0037 -0.2795
0.20 100 12 1 0.00 -0.02 0.0353 0.0062 0.0216 -0.1214
0.25 100 12 1 0.00 -0.04 0.0888 -0.0064 0.0865 -0.0615
0.30 100 12 1 0.02 -0.07 0.1912 -0.0106  0.2739 -0.0345
0.35 100 12 1 0.03 -0.12  0.3702 -0.0118 0.7403 -0.0208
0.40 100 12 1 0.06 -0.19 0.6647 -0.0118 1.7883 -0.0131
0.45 100 12 1 0.10 -0.27 1.1286 -0.0114  3.9766 -0.0085
0.50 100 12 1 0.16 -0.37 1.8367 -0.0108  8.3069 -0.0056
0.20 100 12 0.5 0.00 -0.01 0.0082 0.0092 0.0024 -0.3485
0.20 100 12 1.0 0.00 -0.02 0.0353 0.0062 0.0216 -0.1214
0.20 100 12 1.5 0.00 -0.04 0.0856 0.0049 0.0813 -0.0651
0.20 100 12 2.0 -0.01 -0.07 0.1639 0.0041  0.2150 -0.0416
0.20 100 12 2.5 -0.01 -0.10 0.2761 0.0035  0.4685 -0.0293
0.20 100 12 3.0 -0.01 -0.14 0.4287 0.0030 0.9038 -0.0220
0.20 100 12 3.5 -0.01 -0.19 0.6295 0.0027  1.6032 -0.0172
0.20 100 12 4.0 -0.01 -0.25 0.8871 0.0024  2.6749 -0.0139
0.20 100 12 4.5 -0.02 -0.32 1.2118 0.0022  4.2597 -0.0115
0.20 100 12 5.0 -0.02 -0.41 1.6152 0.0020  6.5391 -0.0096
0.20 100 12 1 0.00 -0.02 0.0353 0.0062 0.0216 -0.1214
0.20 100 24 1 0.00 -0.02 0.2826 0.0018  0.3265 -0.0166
0.20 100 36 1 0.00 -0.02 0.9529 0.0008 1.6194 -0.0051
0.20 100 48 1 0.00 -0.02  2.2576  0.0005  5.0648 -0.0022
0.20 100 60 1 0.00 -0.02  4.4076  0.0003 12.2871 -0.0011
020 70 12 1 0.00 0.00 0.0353 0.0105 0.0216 0.0248
020 75 12 1 -0.01 0.01 0.0353 0.0346 0.0216 0.0566
0.20 80 12 1 -0.02 0.01 0.0353 0.0758 0.0216 0.0751
0.20 85 12 1 -0.03 0.01 0.0353 0.1145 0.0216  0.0442
0.20 90 12 1 -0.03 -0.01 0.0353 0.1193 0.0216 -0.0324
0.20 95 12 1 -0.02 -0.02 0.0353 0.0768 0.0216 -0.1034
0.20 100 12 1 0.00 -0.02 0.0353 0.0062 0.0216 -0.1214
0.20 105 12 1 0.02 -0.01 0.0353 -0.0577  0.0216 -0.0850
0.20 110 12 1 0.03 0.00 0.0353 -0.0916 0.0216 -0.0279
0.20 115 12 1 0.03 0.00 0.0353 -0.0938 0.0216 0.0170
0.20 120 12 1 0.02 0.01 0.0353 -0.0763 0.0216 0.0373
0.20 125 12 1 0.01 0.01 0.0353 -0.0529 0.0216 0.0380
0.20 130 12 1 0.01 0.01 0.0353 -0.0325 0.0216 0.0293

Table 5.2: (Continued from Table 5.1). Components of the Turnbull and
Wakeman pricing expression (5.43). See (5.48) for an explanation of the
column headers.
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Figure 5.1: Option prices subtracted by Monte Carlo estimate. TW: Turnbull

and Wakeman price.

TW3c:

TW with correction for differences in third

cumulants only. Levy: TW without correction for differences in cumulants.
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Figure 5.2: Top: Option prices subtracted by Monte Carlo estimate. Bottom:
Contribution of correction terms to Turnbull and Wakeman price. See (5.48).
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5.3.1 Conclusion

We have seen that the accuracy of the Turnbull and Wakeman algorithm
is good when the stock price volatility is low and when the maturity of
the option is short. The algorithm should be used with caution when the
volatility exceeds 20-30% p.a. and it should never be used to price Asian
options with a maturity longer than 2-3 years. The generalized Edgeworth
series expansion adjusts for differences in kurtosis (and skewness), which
results in huge pricing errors for options with long maturities. A possible
way to fix this is to set the fourth moments equal instead of the second
moments (5.31), but that is outside the scope of this thesis. Finally, we
conclude that adding more terms to the Edgeworth series expansion does
not necessarily improve the accuracy of the approximation.
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Chapter 6

Milevsky and Posner method

[Milevsky and Posner, 1998 are inspired by previous attempts to find a good
approximation for the distribution of the arithmetic average and use this to
price Asian options. Some of the most frequently quoted articles in this
context are [Levy, 1992], [Vorst, 1992] and [Turnbull and Wakeman, 1991].
Milevsky and Posner argue that the reciprocal gamma distribution should
be preferred to the lognormal distribution as approximating distribution.
This is due to the fact that the infinite sum of correlated lognormal random
variables is reciprocally gamma distributed. The resulting pricing formula
bears a close resemblance to the Black-Scholes formula and the method is
very fast and easy to implement.

6.1 Reciprocal gamma distribution

6.1.1 Gamma distribution

Let X ~ I'(«, 8) denote that the random variable X is gamma distributed
with parameters o > 0 and § > 0. The density function g of X is

g(z) =T(a) % Lexp(—F'2), x>0 (6.1)

where I is the gamma function (see [Hoffmann-Jgrgensen, 1994a] p. 216). To
emphasize what the parameters are, we shall also use the notation g(x|«, 3)
and likewise for the distribution function G(z|a, 3). Some useful properties
are collected in the following proposition.

93



54 CHAPTER 6. MILEVSKY AND POSNER METHOD

Proposition 9 Let o> 0 and > 0. Then

G(z|a, ) = G(%|a,1), Yz >0 (6.2)
glala.8) = Zo(Gla1). Vo> (6.3
g(z|a, B) = mg(mm -1,06), Vx>0, Va>1 (6.4)

Proof. See Appendix C. m

6.1.2 Reciprocal gamma distribution

Define Y = % The random variable Y is reciprocally gamma distributed
with parameters  and (. The distribution function G of Y is related to
the distribution function G of X in the following way

1 1 1 1
Grly) = PY<y)=Pl=>-)=PX>-)=1-P(X <-
r(Y) ( ) =Py y) ( y) ( y)
1
= 1- G(;), y>0 (6.5)
Since the gamma distribution is absolutely continuous, %(G (y)) = g(y), and
therefore the density function g of the reciprocal gamma distribution is
d d 1 -1 1
= — (G =—(1-G(-))=0——g(-
9r(y) dy( r(Y)) dy( (y)) " g(y)
1 1
= —g9(—), y>0 6.6
: ( y) (6.6)

It follows that all results with the reciprocal gamma distribution can be
rewritten and expressed by means of the gamma distribution instead. This
is convenient since the gamma distribution is included in many software
packages like MS Excel etc.

As shown in Appendix C, the moments M; of the reciprocal gamma dis-
tribution are

M, = BY] = E|— !

X = B (a—1)(a—2)..(a—i)
and the parameters o and 8 can be calculated from the first two moments
which, therefore, fully specify the distribution

ieN, i<a (6.7)

_ 2My — M?
a = VAN (6.8)
Moy — M?
g = =1 (6.9)

My M;
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6.2 Method

6.2.1 Model

The stock price is given by

and the arithmetic average is

1 n
A= EZ;S“ (6.11)
where the averaging dates are

T
n

. i=1,2..n (6.12)

For continuous averaging, we have

1 T
A= /0 Sudu (6.13)

The option payoff at maturity 7" is max{A — K,0}, so the option price at
time O is

C = exp(—rT)E[(A - K)¥]
= exp(—rT)/ (y — K)+f(y)dy

— 00

— exp(—rT) /K Ty - K)fy)dy (6.14)

where f is the true, but unknown, density function of A. We approximate f
with the density function g of a reciprocal gamma distribution. Fortunately
we can calculate the moments of the true distribution, so we can match these
with the moments of the approximating distribution in order to get a good
fit. The approximate price is then

o0

C = exp(—rT) / (v — K)gn(y)dy (6.15)

K
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6.2.2 Discrete averaging

Define
1 n
[ =— S, 6.16
SO ; tv, ( )

which is the sum of the averaging date prices scaled by the current price.
Later in this chapter, we shall see that the limiting distribution (as 7' — o)
of the continuous averaging version of [ is a reciprocal gamma distribution.
This is the theoretical justification for approximating the average with the re-
ciprocal gamma distribution. The relationship between I and the arithmetic
average A is

1o So
A== S5, =—1 6.17
DILEE (6.17)
The first two risk neutral moments of the average are for r # ¢
S, | — el
— Db~
E[A] = ¢ ( ook (6.18)
52
E[AQ] = n—g(al — as + as — CL4) (619)

where

e2r—a)+o*)h _ (2(r—q)+0?)(n+1)h

ap = (1 — e(r—oh)(1 — eClr—a)+o?)h) (6.20)
(=) (n+2)+0D)h _ (2(r—q)+02)(nt1)h

az = (1 — elr—oh)(1 — elr—ato)h) (6.21)
eBr—a)+o®)h _ ((r—q)(nt+2)+0?)h

as = (1 — e(T—q)h)(l _ e(T—q+02)h) (6.22)
eAr—a)+20H)h _ o(2(r—q)+0?)(n+1)h

= (1 — elr=a+oDh)(1 — Ror—a+o?)h) (6.23)

(6.18)-(6.19) are modified versions of the formulae in [Levy, 1992] (see Ap-
pendix C for details). We choose the parameters of the approximating recip-
rocal gamma distribution so its moments are equal to the above moments of
the true distribution. From (6.8) and (6.9), we get

2Bl - ElAP
= B BLAP (6.24)
EA%] - E[AP
R (6.25)

We can now calculate the option price from the following theorem.
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Theorem 10 The Milevsky and Posner price at time 0 of the Asian option
with maturity T and strike K is

C = eXp(—TT)E[A]G(%bé —1,08) —exp(— rT)KG( la, B) (6.26)

where G(-|a, B) is the distribution function of the gamma distribution with
parameters a and (3 obtained from (6.24) and (6.25).

Proof. From (6.15) and (6.6)

oo

C = exp(—rT) / (v — K)gnlyla, B)dy

K

— exp(—rT) /K - K%g(;\a,md@/

We change variables z = i SO Z—z = —y%, which leads to
01
C = exp(=iT) [ ~(5 - K)glala. f)da
i
K

_ exp(—rT)/O_(i—K) (2]r, B)dz
= exp(—rT) /o? ig(x\a,ﬁ)dx - exp(—rT)K/? g(z|a, B)dx

= exp( TT/ e _1) g(zla — 1, B)dx — exp(— TT)KG( la, B)

1 1
= GXP(—TT)B(O(—_DG(g\Oé—Lﬁ)—eXP( TT)KG( |, 3)
where we have used (6 4) Since M; = E[A] by choice of approximating
distribution and M) = 57— from (6.7), we get the wanted expression

C:exp(—rT)E[A]G(%]a— 1, ) — exp(— rT)KG( . )

Note how the pricing formula (6.26) is similar to the Black-Scholes formula
(2.3) with ®(d;) and ®(d) replaced with G(%|a — 1, 3) and G(%|a, B).

6.2.3 Method overview

The Milevsky and Posner algorithm can be summarized as follows
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e (Calculate the first two moments of the arithmetic average of the stock
price.

e Match the first two moments of the approximating distribution to the
moments above and calculate the parameters of the reciprocal gamma
distribution.

e (Calculate the Asian option price using Theorem 10.

6.2.4 Continuous averaging

For the sake of completeness, we shall also take a look at the Milevsky and
Posner method with continuous averaging. Define the scaled integral

1 T
ZQK;&M (6.27)

so the continuous average is

:—/Smr~4 (6.28)

The limiting distribution of I is the reciprocal gamma distribution as stated
in the next theorem.

Theorem 11 Let

1 T
I, = lim [ = — lim Sydu (6.29)
T—o00 0 T'—oo 0
Assume r — q — —02 < 0. Then I, is reciprocally gamma distributed with
(q r) 2

parameters 1 + =5~ and i 50° which is equivalent to

I ~T1+

o

.50°) (6.30)

Proof. See Appendix A of [Milevsky and Posner, 1998] m

Note that the result is only valid when r — q — —02 < 0. This means that
we should expect the Milevsky and Posner method to perform best when
the volatility o is high and/or when the stock dividend ¢ is greater than the
interest rate r.
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According to [Milevsky and Posner, 1998], the first two risk neutral mo-
ments of the average are for r # ¢

exp((r —q)T) — 1

Bl = s o (6.31)
5 Si,  exp((2(r —q) + )T
ElAT = 2ﬁ (r—q+0%)(2r —2q+ 0?)
1 1 exp((r —q)T)
+r—q[2(r—q)+02_ r—q+o? I} (6.32)
and for r = ¢

E[A] = S (6.33)
E[AQ] _ 275:_(3 eXp(O'QT)O-Z 1—o°T (634)

We can now calculate the parameters a and 3 of the approximating reciprocal
gamma distribution from (6.24) and (6.25). The pricing formula is given in
the following theorem.

Theorem 12 The Milevsky and Posner price at time 0 of the continuous
averaging Asian option with maturity T and strike K is

g exp(—qT) —exp(—rT) , 1
Cc = SO (r—q)T G(E’O‘_Lﬁ)
- exp(—rT)KG(%\a, 3) (6.35)

forr # q and

C =5 exp(—rT)G(%m _1.8) - exp(—rT)KG(%m, 8 (6.36)

forr =gq.

Proof. Insert (6.31) and (6.33) respectively into (6.26). m

6.3 Numerical results
Some of the questions we would like to answer in this section are

1. Is the reciprocal gamma distribution a better choice for approximating
the arithmetic average than the lognormal distribution? In other words,
is the Milevsky and Posner (MP) method better than the Levy method?
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2. How is the accuracy of the MP method affected when we increase the
stock dividend q?

3. Can we improve the MP method by correcting for differences in skew-
ness and kurtosis as the Turnbull and Wakeman (TW) method does?

4. What is the relationship between the discrete and continuous averaging
prices?

Table 6.1 contains option prices for different values of stock price volatility
o, strike price K, number of prices in the average n and maturity 7. The
Monte Carlo simulation has been carried out with 50,000 paths and the
geometric option price as control variate, cf. Chapter 4. Unless otherwise
mentioned the stock dividend, the interest rate and the initial stock price
have been fixed at

g=0, r=20.05, Sp=100 (6.37)

We have included both discrete and continuous averaging prices, cf. (6.26)
and (6.35), as well as prices obtained by using a generalized Edgeworth series
expansion (MP2). The reciprocal gamma distribution has all the necessary
properties to allow us to develop similar results as in Chapter 5. Thus, from
a theoretical viewpoint MP2 has the potential to be just as good as the
Turnbull and Wakeman method. Unfortunately this is not the case as we
shall see.

To answer the first question we look at Figure 6.1 and Figure 6.2. It
appears that the accuracy of the Milevsky and Posner method is more or less
similar to the accuracy of the Levy method, cf. Chapter 5. The important
difference is that when MP underprices then Levy overprices and vice versa.
Based on this, an obvious way to improve the accuracy is to use the average
of the two prices. Numerical results (illustrated in Section 7.2 and Section
8.2) show that this approach is better than any of the methods we have seen
so far, but also that it can not compete with the Curran method in Chapter 8.
Since the MP and Levy methods match the approximating distribution to the
first two moments of the true distribution, the price differences observed are
caused by the higher moments. Figure 6.2 shows the density of the lognormal
distribution subtracted by the density of the reciprocal gamma distribution.

The assumption in Theorem 11 was that r — q — %(72 < 0, but Figure
6.1 shows that the MP method is not good for pricing options with high
volatilities. Let us then take a look at the stock dividend g. Table 6.2
contains prices of Asian options with various strike prices for three different
values of the stock dividend. These prices are illustrated in Figure 6.3 where
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we see that an increase in ¢ leads to a parallel shift along the first axis.
The magnitude of the maximum deviation from the Monte Carlo estimate is
approximately the same for different values of ¢, so we conclude that the MP
method is not more precise for high stock dividends.

We saw in Chapter 5 that the TW algorithm performed better than the
Levy method in most cases. This has inspired us to improve the MP method
in a similar fashion. The prices labelled MP2 have been calculated by means
of the Turnbull and Wakeman algorithm with a reciprocal gamma distribu-
tion as approximating distribution. The moments and cumulants are ob-
tained from (6.24)-(6.25), (6.7) and (5.27)-(5.30) and the derivatives of the
reciprocal gamma density appear from Appendix C. Figure 6.1 and Figure
6.2 show that the accuracy has improved for all volatilities and for most of
the strike prices. In contrast, it is evident from Figure 6.1 that MP2 is ex-
tremely sensitive to increases in maturity and performs worse than the MP
method for 7" > 2. Moreover, comparisons (see Section 7.2) show that the
TW prices in general are better than the MP2 prices.

Table 6.3 and Figure 6.3 show how the discrete averaging prices converge
to the continuous averaging prices for both MP and MP2. Even for 120 prices
in the average there is a difference of approximately 4-6 cents, which implies
that it is not recommendable to use models with continuous averaging when
the option in question is based on a discrete average.
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o K n T MC sd MP MPc MP2

0.05 100 12 1 293 0.0001 2.93 2.71 n/a
0.10 100 12 1 390 0.0004 3.90 3.64 n/a
0.15 100 12 1 5.01 0.0009 5.00 4.68 n/a
0.20 100 12 1 616 0.0016 6.13 5.75  6.16
0.25 100 12 1 731 00024 7.27 6.83 7.33
0.30 100 12 1 847 0.0035 8.42 791  8.50
0.35 100 12 1 964 0.0049 9.55 8.98  9.68
0.40 100 12 1 10.80 0.0065 10.68 10.05 10.86
0.45 100 12 1 11.96 0.0085 11.80 11.12 12.04
0.50 100 12 1 13.11 0.0107 1290 1217 13.21
0.20 100 12 0.5 4.11 0.0007 4.10 3.85 n/a
0.20 100 12 1.0 6.16 0.0016 6.13 5.75  6.16
0.20 100 12 1.5 7.84 0.0025 7.80 730  7.86
0.20 100 12 2.0 932 0.0034 9.26 8.66  9.37
0.20 100 12 2.5 10.66 0.0045 10.58 9.89 10.75
0.20 100 12 3.0 11.90 0.0055 11.79 11.02 12.06
0.20 100 12 3.5 13.05 0.0066 12.92 12.07 13.30
0.20 100 12 4.0 14.14 0.0078 13.98 13.05 14.51
0.20 100 12 4.5 15.16 0.0090 1497 1397 15.70
0.20 100 12 5.0 16.12 0.0102 1591 14.84 16.89
0.20 100 12 1 616 0.0016 6.13 5.75  6.16
0.20 100 24 1 596 0.0016 5.94 5.75 597
0.20 100 36 1 590 0.0016 5.88 5.75  5.90
0.20 100 48 1 586 0.0016 5.84 5.75 587
0.20 100 60 1 584 0.0016 5.82 5.75  5.85
020 70 12 1 31.16 0.0015 31.16 30.96 31.16
020 75 12 1 2642 0.0015 2641 26.20 26.41
020 80 12 1 2172 0.0015 21.71 2149 21.71
0.20 85 12 1 17.16 0.0015 17.14 16.88 17.17
0.20 90 12 1 1292 0.0015 12.88 12,57 12.94
020 95 12 1 919 0.0015 9.16 879 9.21
0.20 100 12 1 6.16 0.0016 6.13 5.75  6.16
0.20 105 12 1 387 0.0016 3.87 3.51  3.87
0.20 110 12 1 229 0.0015 2.31 2.00  2.28
0.20 115 12 1 1.28 0.0015 1.30 1.07  1.27
0.20 120 12 1 0.67 0.0013 0.70 0.55  0.67
0.20 125 12 1 034 0.0012 0.36 026 0.34
0.20 130 12 1 016 0.0010 0.18 0.12  0.16

Table 6.1: Option prices for different volatilities, maturities, strike prices and
number of prices in the average. MP: Milevsky and Posner. MP ¢: MP with
continuous averaging. MP2: MP with cumulant correction & la Turnbull and
Wakeman.
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MC sd MP MPc MP2
29.06 0.0013 29.06 29.02 29.05
24.32 0.0013 24.32 24.27 24.31
19.66 0.0013 19.64 19.57 19.65
15.19 0.0013 15.16 15.04 15.20
11.11 0.0013 11.08 10.88 11.13
7.65 0.0013 7.62 736  7.66
493 0.0013 4.92 4.63  4.93
297 0.0013 2.98 2711 297
1.68 0.0013 1.71 1.48  1.67
0.90 0.0012 0.92 0.76  0.89
0.45 0.0011 048 0.37  0.45
0.22 0.0009 0.24 0.17  0.22
0.10 0.0007  0.11 0.08 0.10
27.01 0.0012 27.01 27.13 27.01
22.29 0.0012 22.28 22.39 22.28
17.67 0.0012 17.65 17.72 17.67
13.31 0.0012 13.28 13.28 13.33
9.44 0.0012 941 932 9.46
6.27 0.0012 6.24 6.07  6.27
3.88 0.0011  3.87 3.66  3.87
2.24 0.0011  2.25 206 2.23
1.21 0.0011 1.24 1.07  1.20
0.62 0.0010 0.64 0.53  0.61
0.30 0.0008  0.32 0.24  0.30
0.14 0.0007  0.15 0.11 0.14
0.06 0.0006  0.07 0.05  0.06
25.03 0.0012 25.02 25.29 25.02
20.32 0.0012 20.31 20.56 20.32
15.77 0.0011 15.74 1594 15.77
11.55 0.0011 11.52 11.62 11.57
7.92 0.0011 7.89 7.88 794
5.05 0.0010 5.04 493  5.06
3.00 0.0010  3.00 285 299
1.65 0.0009  1.67 1.53  1.64
0.85 0.0009 0.88 0.76  0.85
0.41 0.0008 0.44 0.36  0.41
0.19 0.0007  0.21 0.16 0.19
0.08 0.0005 0.10 0.07  0.09
0.03 0.0004 0.04 0.03  0.04

o K n qa
020 70 12 0.04
020 75 12 0.04
020 80 12 0.04
020 85 12 0.04
020 90 12 0.04
0.20 95 12 0.04
0.20 100 12 0.04
0.20 105 12 0.04
0.20 110 12 0.04
0.20 115 12 0.04
0.20 120 12 0.04
0.20 125 12 0.04
0.20 130 12 0.04
020 70 12 0.08
020 75 12 0.08
0.20 80 12 0.08
0.20 85 12 0.08
0.20 90 12 0.08
0.20 95 12 0.08
0.20 100 12 0.08
0.20 105 12 0.08
0.20 110 12 0.08
0.20 115 12 0.08
0.20 120 12 0.08
0.20 125 12 0.08
0.20 130 12 0.08
020 70 12 0.12
020 75 12 0.12
020 80 12 0.12
020 85 12 0.12
0.20 90 12 0.12
0.20 95 12 0.12
0.20 100 12 0.12
0.20 105 12 0.12
0.20 110 12 0.12
0.20 115 12 0.12
0.20 120 12 0.12
0.20 125 12 0.12
0.20 130 12 0.12

o e e e e e e e e e b e b e e e e e e e e b e b b e e e e e e e e e e |

Table 6.2: Option prices for different strike prices and stock dividends. MP:
Milevsky and Posner. MP c¢: MP with continuous averaging. MP2: MP with
cumulant correction & la Turnbull and Wakeman.
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Figure 6.1: Option prices less Monte Carlo estimates. MP: Milevsky and
Posner. MP2: MP with cumulant correction a la Turnbull and Wakeman.
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Figure 6.2: Top: Option prices less Monte Carlo estimates. MP: Milevsky
and Posner. MP2: MP with cumulant correction & la Turnbull and Wakeman.
Bottom: Difference between the lognormal density and the reciprocal gamma
density for the same mean and variance.
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Figure 6.3: Top: Milevsky and Posner option prices less Monte Carlo esti-
mates for different stock dividends ¢. Bottom: Difference between Milevsky
and Posner option prices with discrete and continuous averaging. MP:
Milevsky and Posner. MP2: MP with cumulant correction & la Turnbull
and Wakeman.
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o K n T MP MPc MP2
020 100 12 1 6.13 575  6.16
020 100 24 1 5.94 575  5.97
0.20 100 36 1 5.88 5.75  5.90
0.20 100 48 1 5.84 575  5.87
0.20 100 60 1 5.82 575  5.85
020 100 72 1 5.81 575  5.83
0.20 100 84 1 5.80 575  5.82
0.20 100 96 1 5.80 5.75  5.82
0.20 100 108 1 5.79 5.75  5.81
0.20 100 120 1 5.79 575  5.81

Table 6.3: Option prices for different numbers of prices in the average. MP:
Milevsky and Posner. MP c: MP with continuous averaging. MP2: MP with
cumulant correction & la Turnbull and Wakeman.

6.3.1 Conclusion

Our results show no indication that the reciprocal gamma distribution is a
better approximation to the distribution of the arithmetic stock price average
than the lognormal distribution. The pricing errors of the Milevsky and
Posner method and the Levy method seem to be negatively correlated, so we
suggested that taking the average of the prices would improve the accuracy,
which was supported by numerical results.

[Milevsky and Posner, 1998] state that the pricing method should per-
form at its best when ¢ > 7, but our results show no noteworthy increase
in accuracy for options with high stock dividends. Increasing q for fixed K
implies that the option’s probability of finishing in-the-money is decreasing,
which explains the shift seen in Figure 6.3.

We improved the Milevsky and Posner method to take differences in skew-
ness and kurtosis into account but, as in the Turnbull and Wakeman case,
the pricing errors got out of control for long maturities. Furthermore, this
approach was dominated by the TW algorithm for most values of the strike
price.

Finally, we concluded that even though the discrete average converge
to the continuous average, there are substantial price differences for small
numbers of prices in the average. Since all traded Asian options are based
on a discrete average, this implies that continuous averaging models should
be used with caution.
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Chapter 7

Vorst method

[Vorst, 1992] gives an exact pricing formula for Asian options based on a
geometric average. He uses this to approximate the arithmetic Asian option
price by adjusting the strike price with the difference in expectation of the
arithmetic and geometric averages. Furthermore, he obtains upper and lower

bounds on the price.

7.1 Method
7.1.1 Model

The stock price is given by
1,
Sy = Spexp((r —q— 30 )t + oWy)

The geometric average is

tZ:Zh, h:—, i:1,2,...,n

(7.1)

(7.2)

(7.3)

(7.4)
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7.1.2 Geometric Asian option

From (7.2) the natural logarithm of the geometric average is

1< 1<, S,
lnG:E;lnSti:lnSojLE;ln 3, (7.5)
(7.1) gives that
, 1
In ?{: = (r—q-— 502)75,» + oWy,
1
~ N((T—q— 50-2>ti70-2ti)7 1= 1,2,...,7?/ (76)

Since the Brownian Motion has independent increments, we conclude from
(7.5) and (7.6) that In G is normally distributed and we shall now find the
mean i, and the variance o2,

The mean of In G is

1 & S;,
pe = lnSO—i_ﬁ;E[lnSO]

n

1

1 2
= IDSO‘FEZ(T—q—iO' )tz

where we have used the summation formula

n

Si=2tl, (7.8)

: 2
i=1
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The variance of In G is

S S
of = QZZCOU (In tzl So)

lel

_ E ZZUQCOU(WWVVW)

i=1 j=1

0_2 n n

i=1 j=1

= Un—Qh Z Z min(z, j) (7.9)

i=1 j=1

To calculate the double sum we use the summation formula (7.8) and

iig _ (2n—|—1)6(n+1)n (7.10)
i=1
We get
S0 min(i, j) = iimin(i,j)—i—i i min(i, j)
im1 j=1 =1 j=1 =1 j—it1
=220t >
=1 j=1 i1 j=itl

n

= Zz+1z+z n—z

i=1

= 52@'2 + i+ 2ni — 2i%)

= —Z ((2n + 1)i —4®)

_ 2n+1ZZ——Zz

2n+1n+1 1(2n+1)(n+1)n

5 2 ' 2 6
_ (2n—|—1)6(n+1)n (7.11)
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The variance can now be expressed as

G = %fjfjmin(@j)

i=1 j=1
_ *h(2n+1)(n+1)n
- on? 6
2 1 1
_ 2t et (7.12)
61
For easier comparison with [Vorst, 1992], we can also write
2n—1)(n —1) + 6n
2 — Qh(
¢ 7 6n
2n —1
= o2(h(n — 1)% +h)
2n —1
= o*(h+ (T—h)w) (7.13)

on

We have seen that InG ~ N(uq,0%), so the geometric average G is
lognormally distributed and we are now able to price the option based on
the geometric average.

Theorem 13 The price at time 0 of the geometric Asian option with strike
K and maturity T is

Co = exp(—rT){exp(pqa + %aé)‘b(dl) — K®(ds)} (7.14)

where

~InK +0?
g = HeZmATIG (7.15)
oG

dg = dl—O'G (716)

Proof. The payoff of the option is Maxz(G — K, 0) so the price is
Cq = exp(—rT)E[(G — K)T]

= exp(—rT) /Koo(x — K)g(x)dx

where g is the lognormal density function of GG. The result now follows from
the proof of Theorem 8. m
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7.1.3 Arithmetic option price and bounds

Since the geometric average is less than the arithmetic average, G < A, the
geometric option price is a lower bound for the arithmetic option price

Co =exp(—rT)E[(G — K)"] < exp(—rT)E[(A— K)*]|=C (7.17)
The inequality

max(A— K,0) = max(G—K,G—-A)+A-G
< max(G—-K,00+A—-G (7.18)

leads to the upper bound

exp(—rT)E[max(G — K,0) + A — G]
exp(—rT){E[(G — K)"] + E[A] - E[G]}
= Cg+exp(—rT)(E[A] — E[G]) (7.19)

Thus, we have obtained the following bounds on the arithmetic option price
Co < C < Cq+exp(—rT)(E[A] — E[G)) (7.20)

To calculate the upper bound we must calculate the mean of the arithmetic
average. From (7.1), (7.3), (7.6) and (5.33)

Fl4] = B2Y0S.)

R
_ 20NT Rt
=1
S0 o L, 1,
= — exp((r —q — 50 )t + 50 t;)

i=1

= 23 el - gin)

Sy er—ah _ g(r—a)(n+1)h

n 1 —elr—a)h
So gl — el
- =2 t-qh—__ =
- e =D (7.21)

where we have used the summation formula

n a(n+1)

Y= a#0 (7.22)

1—e2
i=1
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Since G is lognormally distributed with parameters p and 0% the mean of
the geometric average is

B[G) = expliug + 302) (7.23)

Once it has been established that a price is in a certain interval, it is
tempting to approximate the price with the value of the interval midpoint.
[Vorst, 1992] takes another approach since he approximates the arithmetic
option price with the price of a geometric option with a downward ad-
justed strike. The rationale is that the geometric and arithmetic averages
are strongly correlated and so are the prices of the corresponding options.
Moreover, pricing with a lower strike will to some extent compensate for the
fact that the geometric option price is always lower than the arithmetic one.

Theorem 14 Define the Vorst price at time 0 of the arithmetic Asian option
with strike K and maturity T as

C = exp(—rT)E[(G — K')*] (7.24)
where the adjusted strike price is
K' = K — (E[A] — E[G]) (7.25)
The pricing formula is then
~ 1 ! ! U
C = exp(—rT){exp(ug + 50¢)(dy) — K'®(dy)} (7.26)
where pe; and o2, are obtained from (7.7) and (7.12) and
—In K’ 2
g, = PeZ R HIG (7.27)
e
d/2 = dll — 0 (728)

The approzimate option price C is also in between the upper and lower bounds
in (7.20), which implies that the pricing error is bounded by

< exp(—rT)(E[A] — E[G]) (7.29)

Proof. (7.26) follows directly from applying Theorem 13 to the geometric
Asian option with strike K’, cf. (7.25). We have to show that the price C' is
in between the bounds in (7.20). Since

max(G — K,0) < max(G — K + E[A] — E[G],0)
= max(G — K, E[G] — E[A]) + E[A] — E[G]
< max(G — K,0) + E[A] — E[G]
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it follows that

Cq = exp(—rT)E[(G - K)*]
< exp(~rT)EI(G - K + E[A] - EIG))']
= C
< exp(-+T)E[(G ~ K)* + ELA] - E[G]

= Cg +exp(—rT)(E[A] - E[G])

The same bounds apply for the true price C, cf. (7.20), so we conclude that
the absolute difference between C' and C' is less than the difference between
the upper bound and the lower bound

c— c‘ < Cg + exp(—rT)(E[A] — E[G]) — Ca

= exp(—rT)(E[A] - E[G])

7.1.4 Method overview

The Vorst method can be summarized as follows

e (Calculate the difference of the mean of the arithmetic and geometric
averages.

e Reduce the strike price by the difference above.
e Use Theorem 14 to calculate the price of the arithmetic Asian option.

e Obtain the pricing bounds in (7.20) on the arithmetic Asian option by
calculating the price of the geometric Asian option in Theorem 13.

7.2 Numerical results

Table 7.1 contains option prices for different values of stock price volatility o,
strike price K, number of prices in the average n and maturity 7. The Monte
Carlo simulation has been carried out with 50,000 paths and the geometric
option price as control variate, cf. Chapter 4. Unless otherwise mentioned
the stock dividend, the interest rate and the initial stock price have been
fixed at

g=0, r=20.05, Sp=100 (7.30)
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We see that the bounds labelled up and C¢ are very poor in the sense that
they are far away from the Monte Carlo estimate. Figure 7.1 shows that the
accuracy of the Vorst method deteriorates as volatility and maturity increase.
It appears from Figure 7.2 that the Vorst method slightly overprices in-the-
money options while at-the-money and out-of-the-money options are heavily
underpriced. When we think of it, the substantial pricing errors should not
come as a big surprise, since we approximate the arithmetic average with a
lognormal distribution and only correct for the mean.

The table and the figures in this section have also been used to illustrate
two points from the previous chapter. The first point is that taking the aver-
age of the Levy price and the Milevsky and Posner price (MPLevy/MP+L)
leads to a superior accuracy compared to all the other methods we have
considered so far. The second point is that the generalized Edgeworth se-
ries expansion is better suited for a lognormal distribution (TW) than for a
reciprocal gamma distribution (MP2).

7.2.1 Conclusion

The Vorst method is the first method in this thesis to establish bounds on
the option price. We saw that the same bounds applied to both the true
price and the approximation but unfortunately they did not constrain the
prices enough to be useful. Neither were the Vorst prices very encouraging
but all our efforts have not been in vain. We used the geometric average to
price options based on an arithmetic average but, as we shall see in the next
chapter, we far from used all its potential.
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o K n T MC sd Vorst up Cs MP+L
0.05 100 12 1 293 0.0001 2.93 293 290 2.93
0.10 100 12 1 3.90 0.0004 3.90 393 3.84 3.90
0.15 100 12 1 5.01 0.0009 5.00 5.07 4.88 5.01
0.20 100 12 1 6.16 0.0016 6.13 6.27 594 6.15
0.25 100 12 1 7.31 0.0024 727 7.51  6.99 7.31
0.30 100 12 1 8.47 0.0035 8.40 876 8.02 8.47
0.35 100 12 1 9.64 0.0049 9.53 10.03 9.04 9.63
0.40 100 12 1 10.80 0.0065 10.66 11.32 10.03 10.79
0.45 100 12 1 11.96 0.0085 11.77 12.63 11.00 11.94
0.50 100 12 1 13.11 0.0107 12.86 1395 11.94 13.09
0.20 100 12 0.5 4.11 0.0007 410 417 4.01 4.11
0.20 100 12 1.0 6.16 0.0016 6.13 6.27 594 6.15
0.20 100 12 1.5 7.84 0.0025 7.78 8.00 7.50 7.83
0.20 100 12 2.0 9.32 0.0034 9.24 952 885 9.31
0.20 100 12 2.5 10.66 0.0045 10.55 10.89 10.05 10.65
0.20 100 12 3.0 11.90 0.0055 11.76 12.16 11.15 11.89
0.20 100 12 3.5 13.05 0.0066 12.88 13.34 12.16 13.04
0.20 100 12 4.0 14.14 0.0078 13.93 14.45 13.09 14.12
0.20 100 12 4.5 15.16 0.0090 14.91 15.49 13.96 15.14
020 100 12 5.0 16.12 0.0102 15.85 16.47 14.77 16.10
0.20 100 12 1 6.16 0.0016 6.13 6.27 594 6.15
0.20 100 24 1 596 0.0016 593 6.08 5.74 5.96
0.20 100 36 1 590 0.0016 5.86  6.01 5.68 5.89
0.20 100 48 1 586 0.0016 5.83 5.98 5.64 5.86
0.20 100 60 1 5.84 0.0016 581 5.96 5.63 5.84
020 70 12 1 31.16 0.0015 31.16 31.16 30.83 31.16
020 75 12 1 26.42 0.0015 26.42 26.42 26.09 26.42
020 80 12 1 21.72 0.0015 21.72 21.73 21.40 21.72
020 85 12 1 17.16 0.0015 17.17 17.20 16.86 17.16
020 90 12 1 1292 0.0015 12,92 1298 12.64 12.92
020 95 12 1 9.19 0.0015 9.18 9.28 8.95 9.19
0.20 100 12 1 6.16 0.0016 6.13 6.27 594 6.15
0.20 105 12 1 3.87 0.0016 3.82  4.02 3.69 3.87
0.20 110 12 1 229 0.0015 223 248 2.14 2.29
0.20 115 12 1 1.28 0.0015 1.22 150 1.17 1.28
0.20 120 12 1 0.67 0.0013 0.63 093 0.60 0.68
0.20 125 12 1 0.34 0.0012 0.30 0.62 0.29 0.34
0.20 130 12 1 0.16 0.0010 0.14 047 0.13 0.16

Table 7.1: Option prices and bounds for different volatilities, maturities,
strike prices and number of prices in the average. up: Vorst upper bound.
Cq: Lower bound (geometric option price). MP+L: Average of Levy price
and Milevsky and Posner price.
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Figure 7.1: Vorst option prices less Monte Carlo estimates. TW, MPLevy
and MP2 correspond to methods treated in previous chapters.
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Figure 7.2: Vorst option prices less Monte Carlo estimates. TW, MPLevy
and MP2 correspond to methods treated in previous chapters.
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Chapter 8

Curran method

[Curran, 1994] introduces an extremely precise method for pricing Asian op-
tions and options on portfolios. The approach is to condition on the geomet-
ric average and integrate with respect to its lognormal distribution. Curran
develops two different approximations, and we shall use the so-called naive
approximation to obtain a lower bound on the Asian option price.

8.1 Method

8.1.1 Model

The stock price follows the stochastic differential equation
dS; = (r — q)Sidt + .S, dW; (8.1)
and the arithmetic average of the stock prices is
A=Ltys, (8.2)
(e
where the time points are equidistant
ti=1th, h=—, 1=12,...n (8.3)

n

(8.1) implies that the stock price at time ¢; is lognormally distributed, so

1
InsS;, = lnSo+(r—q—§02)t,»+UI/Vti
~ N(u;,o?), i=1,2...n (8.4)

81
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where

1
w, = lnSO—i—(T—q—iUQ)ti, i=1,2,...,n (8.5)

o2 = o*;, i=12..n (8.6)

7

The geometric average is

3=
—~
1%
~J
~—

G = (H Stz)
=1
and taking the natural logarithm leads to
1 n
InG =~ ;‘ In S,, (8.8)

From Chapter 7 we know that In G is normally distributed with parameters
e and o2, given by

1 ., T+h
pe = InSo+(r—q— 502) ;_ (8.9)
o2 = UQh(Qn +1)(n+1) (8.10)

6n
To sum up, the marginal distributions of In S;, and In G’ are normal, and it

turns out that they also have a jointly normal distribution.

Proposition 15 The random vector n; = (In S;,,InG) has a 2-dimensional
normal distribution for i = 1,2,...,n with mean vector

(s b)), 1=1,2,....m (8.11)
and covariance matriz
{ ‘;2 Jé ] L i=1,2,...n (8.12)
where
v; = Cov(InS;,,InG) = %((271 +1)i—i?), i=1,2,..,n (8.13)

Proof. Let i € {1,2,...,n}. We can split the Wiener process at time ¢,
into independent increments

(th - thfl) + (Vthfl - Vthfz) +...+ (VVl‘l - WO) + WO
= AW, + AW,  + ..+ AW,

Wi

n
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Define the vector of increments
WA = (AW,,, AW,,, ..., AW, )

which has a n-dimensional normal distribution. Since In.S;, and InG are
linear combinations of these increments, we can find a vector ¢; and a matrix
>, SO

=&+ W5,

It follows from (4.22.16) in [Hoffmann-Jgrgensen, 1994a] that the distribution
of n, is jointly normal. The covariance between InS;, and In G is

1 n
v = Cov(InS;,,InG) = Cov(In Sy, - Zln St;)

= —ZCOU In S;,,InS;)) ZU min(t;, ;)

n

= —thln i,7) gn h Zmln i,7) Z min (4, j))

j=i+1
2h 2h 1
= Z]+z TR (i)
j=i+1
o?h 1. 1, o%h
_ onr . Lot 2% 1._‘2
- (m+22 22) 2n((n+ )i — 1)

|
The next proposition shows that the normal distribution is stable to con-
ditioning when the random variables are jointly normal.

Proposition 16 The conditional distribution of In S;, given In G is a normal

distribution
i oh
(lnStz“nG:y)NN(M2+(Q_MG)_QZ>UZQ__;)> 221,2,,71 (814)
e e

Moreover, (S| InG) has a lognormal distribution and

Vi 1 Vi .
=yl =exp(p; + (v — pg)—= + =(07 — =%)), i=1,2,...,n

E|S;.
[tl oy 2
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Proof. We conclude from (10.7.6) in [Hoffmann-Jgrgensen, 1994b| and
Proposition 15 that (In S;,|In @) is normally distributed. The calculation of
the mean and the variance in (8.14) is straightforward, but has been left out.
It follows per definition that (S;|InG) is lognormally distributed with the
same parameters, and the conditional expectation (8.15) is then calculated
from (5.33). m

8.1.2 Bounds on the option price

We condition on the geometric average GG in the pricing expression of the
Asian option

C = e™E[(A-K)"]
= e E[E[(A - K)'|G]]

i /O " B(A = K)Y|G = 2]g(2)da (8.16)

where ¢ is the lognormal density function of G. Define

C - /0 El(A — K)*|G = 2]g(2)dx (8.17)
Cy — /K " Bl(A— KYG = alg(x)da (8.18)
C=e™(Cy+ o) (8.19)

Since the arithmetic average is greater than the geometric average A > G

Cy = /OO EA - K|G = 2)g(2)dx (8.20)

K

Loosely speaking, C' corresponds to the situation where the geometric option
finishes out-of-the-money and the status of the arithmetic option is unknown.
Likewise, C5 corresponds to the situation where both options finish in-the-
money. Proposition 16 enables us to calculate Cy from (8.20), but we have
to settle for an approximation of C';. Using Jensen’s inequality we obtain a
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lower bound on C}

=

C, = E[(A—- K)"|G = z]g(z)dz

(E[A— K|G =z])"g(z)dx

=

E[A - K|G = z]g(z)dx

vV
Qrs— ﬁ%

= (8.21)
where
L={z|E[A|G =z] = K} (8.22)
To find L we calculate the conditional expectation
1 < 1 <
E[A|G =zx] = E[— 1G=x]=— ES;,|InG =1
[A|G = 2] [n;;&“; 7] n;;[&JnG nal
1< Vi 1 ’712
= ;GXP(M + (Inz — IU’G)O__QG + 5(03 - %)) (8:23)

where we have used (8.15). Setting the last expression equal to K and solv-
ing for x is difficult, so we have applied a simple numerical method, which
appears from the Visual Basic code in Appendix E. It is important that the
approximation L is greater than L to make sure that C} is a lower bound on

Ch.

Theorem 17 A lower bound on the price of the Asian option with strike K
and maturity T is

é = exp(—rT)(C’l + 02)
_ IR 1 o g le —InL+7;
= eXp(_TTHg ;eXp(Mz’ + §Uz'>q)( o

e —InL

)

— KO )} (8.24)

oG

where the relevant parameters are given in (8.5), (8.6), (8.9), (8.10), (8.13)
and (8.22).
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Proof. Collecting (8.21) and (8.20) gives

e = [ " BlA - KIG = alg(a)d
- /Loo E[A|G = z]g(z)dx — K/Loo g(x)dzx
= /Loo E[% ZSQ\G = z|g(z)dr — K/Loog(x)dz
— /LOO % ZE[SM‘G = z|g(x)dx — K/Loog(x)dz

I [™
- E;/L E[S;,

InG = Inzlg(z)dx — K/LOO g(x)dx

We know from the proof of Theorem 8 that

K/ g(z)dz = K@(M)
L e
and from (8.15)
/ E[S;|InG = Inz|g(x)dz
L
° L1, o
— [ explp + (= pig) 25 + 50— Zo)gla)ids
L e e

Ly

> Vi 1 %2
= exp(u; +507) | exp((lne — ug)—5 )9(z)dx
L

poal p
Using the density (5.38) of the lognormal distribution the last integral is

o 1 v, 192 1 pug—Inz,
—exp((lnz — pg)— — =— — =(————))dx
| enlting o) (Le= ity

aé 2 aé 2 oq
We make the change of variables

pe —Inx+7, dz 1

z = , =

oa dx oax
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which leads to

I 1 Vi v lqf 1 Vi \2
_ LACHR ) P L LI EA P
/‘GlnLJr’Yi \ 21 eXp((O_G Z>O'G 20‘% Q(Z O'G) ) :
oG
pQ—lnL+'yi
o i L e ¢ ivg
o \/27rexp( ‘oo +202G 2 202G+ O'G) ®
pG—In L+v;
el Loy
= expl——% z
oo V2T P 2
—InL .
_ (D(IU’G n +f}/z)

e
Finally, we collect the terms

Ci+Cy = o ;GXP(M + §Uz'>q)( oe )
—K‘I)('MG —lnL)

e
from which (8.24) follows. =
[Curran, 1994] does not mention any upper bounds, but [Rogers and Shi, 1995],
whose method relies on conditioning on the Brownian Motion, use the in-
equalities

0 < E[U']-(EUD"

= (B - |EW))
< SBlU - B
< % Var(D) (8.25)
to form bounds similar to
0 < BIB[(A-K)'|G) - (B[4 - KIG)"]
< SEl/Var(A—KIG) (8.26)
From (8.21) an upper bound on C} is then
¢ = [ (Bla-K)IG = ) gla)da
—|—% /0 VVar(A - K|G)g(z)dx (8.27)

Due to time constraints we have not been able to pursue this upper bound
any further.
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8.1.3 Method overview

The Curran method can be summarized as follows

e Calculate the mean and the variance of InG (the logarithm of the
geometric average).

e For each averaging time ¢; calculate the mean and the variance of In S,
(the logarithm of the stock price at time ¢;) and the covariance between
InG and In S,.

e Use a numerical method to find the lower limit L of the integral in
(8.21).

e Obtain a lower bound on the price of the Asian option by means of
Theorem 17.

8.2 Numerical results

Table 8.1 contains the Curran lower bound (CLB) on the option price for
different values of stock price volatility o, strike price K, number of prices in
the average n and maturity 7. The Monte Carlo simulation has been carried
out with 50,000 paths and the geometric option price as control variate, cf.
Chapter 4. We have also included the approximation L of the lower limit
L in the C| integral (8.21). Unless otherwise mentioned the stock dividend,
the interest rate and the initial stock price have been fixed at

g=0, r=20.05, Sp=100 (8.28)

The lower bound is extremely accurate, which we can see in the last
column of Table 8.1. CLB and the Monte Carlo estimates only differ on the
third or fourth decimal and CLB is inside the 95% confidence interval for all
parameter values as seen in Figure 8.1 and Figure 8.2. These figures have
also been used to illustrate that the Curran method generally is better than
averaging the Levy price and the Milevsky and Posner price, cf. Chapter 6.
Though, it is worth noting that MPLevy is inside the 95% confidence interval
in most cases.

In Figure 8.2 we see that the lower bound is greater than the Monte
Carlo estimate for most values of the strike price, which tells us two things.
First of all the MC estimates are too low and secondly the Curran method
is so accurate that even Monte Carlo simulation has problems matching it.
We have run additional Monte Carlo simulations with 100,000 and 200,000
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paths, which show that CLB is below the MC estimates except when the
option is deep-in-the-money. CLB is still inside the 95% confidence interval
and the relative differences are of magnitude less than 0.01 %, which should
not cause any concern.

Table 8.1 shows that L is close to K and decreasing in o and 7', which
is in accordance with the differences between the geometric and arithmetic
option prices seen in Figure 4.4 and Figure 4.5. The closer L (and hence L)
is to K, the smaller C, is, which implies a more accurate lower bound C. We
also see that the difference between L and K is smallest for K = 100 = So
and it increases as the strike price moves away from the initial stock price.

8.2.1 Conclusion

We implemented the lower bound in [Curran, 1994] on the price of an Asian
option and the result was very inspiring. The lower bound is so precise that
it is the true price for all practical purposes. In contrast to other methods,
the accuracy is retained even for large volatilities and long maturities as well
as the whole range of strike prices.

The Curran method revealed that our Monte Carlo estimates from sim-
ulating with 50,000 paths were slightly too small, since the estimates were
below the lower bound in some cases. Increasing the number of paths to
200,000 fixed this, but was also very time-consuming.

The lower bound was inside the 95% confidence interval for the Monte
Carlo estimates for all parameter values. To put this into perspective we
used the simpler one of the two approximations in [Curran, 1994] since it
does not require numerical integration. Finally, we suggested how to obtain
an upper bound on the option price inspired by [Rogers and Shi, 1995].
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o K n T MC sd CLB L CLB-MC

0.05 100 12 1 293 0.0001 293 99.9856 0.0000
0.10 100 12 1 390 0.0004 3.90 99.9456 0.0000
0.15 100 12 1 501 0.0009 5.01 99.8791 0.0000
0.20 100 12 1 6.16 0.0016 6.16 99.7859 0.0003
0.25 100 12 1 731 0.0024 731 99.6662 0.0001
0.30 100 12 1 847 0.0035 847  99.5198 0.0001
0.35 100 12 1 9.64 0.0049 9.64 99.3467 0.0002
0.40 100 12 1 10.80 0.0065 10.80  99.1473 0.0003
0.45 100 12 1 11.96 0.0085 11.96 98.9212 0.0004
0.50 100 12 1 13.11 0.0107 13.12 98.6684 0.0008
0.20 100 12 0.5 4.11 0.0007 4.11 99.8931 0.0001
0.20 100 12 1.0 6.16 0.0016 6.16  99.7859 0.0003
0.20 100 12 1.5 7.84 0.0025 7.84 99.6786 0.0003
0.20 100 12 2.0 932 0.0034 9.32 99.5712 0.0002
0.20 100 12 2.5 10.66 0.0045 10.66  99.4637 0.0001
0.20 100 12 3.0 11.90 0.0055 11.90 99.3561 0.0002
0.20 100 12 3.5 13.05 0.0066 13.05  99.2483 0.0004
0.20 100 12 4.0 14.14 0.0078 14.14  99.1405 0.0007
0.20 100 12 4.5 15.16 0.0090 15.16  99.0325 0.0012
0.20 100 12 5.0 16.12 0.0102 16.13  98.9243 0.0019
0.20 100 12 1 6.16 0.0016 6.16 99.7859 0.0003
0.20 100 24 1 596 0.0016 5.96 99.7921 -0.0011
0.20 100 36 1 590 0.0016 5.89 99.7945 -0.0020
0.20 100 48 1 586 0.0016 5.86 99.7958 -0.0026
0.20 100 60 1 584 0.0016 5.84 99.7966 -0.0027
020 70 12 1 31.16 0.0015 31.16 69.1140 0.0009
020 75 12 1 2642 0.0015 26.42 74.3369 0.0008
0.20 80 12 1 21.72 0.0015 21.72  79.5133 0.0003
020 85 12 1 1716 0.0015 17.16  84.6450 0.0006
020 90 12 1 12,92 0.0015 12.92 89.7334 0.0007
020 95 12 1 919 0.0015 9.19 94.7799 0.0001
0.20 100 12 1 6.16 0.0016 6.16 99.7859 0.0003
0.20 105 12 1 3.87 0.0016 3.87 104.7530 0.0002
0.20 110 12 1 229 0.0015 2.29 109.6826 -0.0001
0.20 115 12 1 1.28 0.0015 1.28 114.5759 -0.0005
0.20 120 12 1 0.67 0.0013 0.67 119.4341 0.0004
0.20 125 12 1 034 0.0012 0.34 124.2585 0.0007
0.20 130 12 1 016 0.0010 0.16 129.0501 0.0012

Table 8.1: Curran lower bound (CLB) on the Asian option price for different
values of volatility, strike price, number of prices in the average and maturity.
MC: Monte Carlo estimate. sd: Standard deviation of MC estimator. L:
Approximation of L in (8.21).
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Figure 8.1: Curran lower bound on the Asian option price and 95% confidence
interval for the Monte Carlo estimate. MPLevy: Average of Levy price and
Milevsky and Posner price.
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Chapter 9

Conclusion

Numerical results

In this thesis I have derived and implemented selected methods for pricing
Asian options. First of all, I looked at Monte Carlo simulation with and
without variance reduction methods. The numerical results led me to con-
clude that using the price of the geometric Asian option as control variate is
by far the best way to price the arithmetic Asian option. This is due to the
high correlation between the geometric average and the arithmetic average.
The estimates of the standard method and the antithetic method had stan-
dard deviations so large that they could not be relied on, and reducing the
standard deviations by increasing the number of paths was not computation-
ally feasible. I also realized that the quality of the random numbers is very
important and I expect that a more sophisticated random number generator
can lead to better Monte Carlo estimates.

The pricing method in [Turnbull and Wakeman, 1991] performed very
well for small stock price volatilities and short maturities. For large volatil-
ities and maturities longer than a couple of years, the kurtosis correction in
the generalized Edgeworth series expansion resulted in large price deviations
from the Monte Carlo estimates. I studied the impact of removing correc-
tion terms in the pricing expression and I concluded that not adjusting for
differences in skewness and kurtosis, which is equivalent to the method in
[Levy, 1992], improved the accuracy in some cases.

Having used the lognormal distribution as approximation for the unknown
distribution of the arithmetic average, I turned to the reciprocal gamma dis-
tribution suggested by [Milevsky and Posner, 1998]. The numerical results
showed no improvement compared to the Levy method but the pricing errors
of the two methods seemed to be negatively correlated. This gave me the idea
to take the average of the prices, which turned out surprisingly well in terms
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of accuracy. I also applied the generalized Edgeworth series expansion in the
Milevsky and Posner setup, which led to good results for short maturities.
As in the Turnbull and Wakeman case, the pricing errors were substantial for
maturities longer than a couple of years, and the accuracy was better with
the lognormal distribution in general. Finally, I showed a considerable price
difference between Asian options based on discrete and continuous averages.

The lognormal approximation in [Vorst, 1992] was only acceptable for
small volatilities and in-the-money options with short maturities. 1 also
derived a pricing formula for the geometric Asian option, which was used
as a lower bound on the price of the arithmetic Asian option. The pricing
bounds were very easy to calculate but they were too wide to constrain the
price sufficiently.

The last pricing method was the lower bound in [Curran, 1994]. The
numerical results were almost indistinguishable from the Monte Carlo esti-
mates, so I concluded that the lower bound is the true price for all practical
purposes. Increasing the stock price volatility and the maturity did not spoil
the accuracy, since the lower bound was still inside the 95% confidence inter-
val for the Monte Carlo estimates. The Curran method was actually more
precise than Monte Carlo simulation with 50,000 paths, and it took more
than 100,000 paths to get the Monte Carlo estimates above the lower bound
for most values of the strike price.

Comparison of pricing methods

I have compared the methods as they appeared in the previous chapters and
I shall summarize the conclusions here. It is difficult to rank the methods
in terms of accuracy since none of them are uniformly better than any other
method. Furthermore, many parameters can be varied, so I shall draw con-
clusions on a general purpose basis.

The Vorst method heavily underpriced out-of-the-money options and con-
sequently it is my candidate for the least usable method. Then follow the
Levy method and the Milevsky and Posner method due to their large varia-
tion and sensitivity to volatility and maturity. Next in line are the Turnbull
and Wakeman method and its reciprocal gamma equivalent MP2, since they
performed well in many cases, but unfortunately they were next to useless
for long maturities. My idea of taking the average of the Levy price and
the Milevsky and Posner price is the second best method. For a wide range
of parameter values, it gave prices within the 95% confidence interval for
the Monte Carlo estimates. The best method, in my opinion, is the Cur-
ran method, because the lower bound was very close to the Monte Carlo
estimates even for large values of volatility and maturity.
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Thus, the main conclusions of this thesis are:

e The lower bound in [Curran, 1994] on the price of an arithmetic Asian
option is very accurate and reliable.

e The price of the geometric Asian option is a very suitable control variate
for Monte Carlo simulation of the price of an arithmetic Asian option.

Computational aspects

An in-depth discussion of the programming is not appropriate in my point
of view, but I would like to add a few remarks. For anyone with some
programming experience, all the methods should be easy to implement by
means of this thesis. Extending the code to a more generalized setting should
not pose a problem and neither should improvements to reduce memory usage
and computational time. The priority for me has been to write code that is
usable and reliable.

The Monte Carlo simulation is very time-consuming, especially when us-
ing many paths to obtain a high level of precision. I used a very simple
numerical method in the implementation of the Curran method, so obtain-
ing one bound takes a couple of seconds. The rest of the methods only use a
fraction of a second per price, which implies that all methods except Monte
Carlo simulation can be used in real time to support trading.

Future research

The basic Black-Scholes model used in this thesis enables many generaliza-
tions. It could be interesting to investigate if the conclusions made also apply
to setups with e.g. pricing in the averaging period, flexible and floating Asian
options, non-lognormal underlying assets and a stochastic term structure of
interest rates.

Calculation of accurate hedging parameters in relation to the pricing
methods is another important direction for future research, since Asian op-
tions are often used for hedging purposes.

Finally, it would be advantageous to find out if the upper bound men-
tioned in Chapter 8 is as good as the lower bound.
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Appendix A

Monte Carlo simulation

A.1 Visual Basic code

The code can also be downloaded from the website http://www.lbn.dk /master/.

A.1.1 Standard Monte Carlo

Function GenerateRandomNumbers() As Variant

Dim pi As Double, a As Double, c As Double
Dim n As Long, n_max As Long

Dim I() As Double
Dim X() As Double

pi = 4 * Atn(1)
a=775
c=2"731-1
n_max = 6000000
ReDim I(n_max)
ReDim X(n_max)

I1(0) = 1773

For n = 1 To n_max
I(n) =c* (a*xI(mn-1)/c-Int(a*xI(m-1)/ <))
’a times I() modulo c

Next n

’# random numbers

’seed for the linear congruential generator
’I() divided by c is iid U(0,1)

For n = 1 To n_max - 1 Step 2
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’Box-Muller method: X() is iid N(0,1)

X(n) = Sqr(-2 * Log(I(n) / c)) * Cos(2 * pi * (I(n + 1) / ¢©))

X(n + 1) = Sqr(-2 * Log(I(n) / c)) * Sin(2 * pi * (I(n + 1) / ©))
Next n

Open ’’c:\dokumenter\montecarlo\random_normal_seed_1773.txt’’ _
For Output As #1

For n = 1 To n_max
Write #1, X(n)

Next n

Close #1

End Function

Function MonteCarlo(sigma As Double, K As Double, m_ave As Integer, _
q As Double, r As Double, S_O As Double, T As Double) As Variant

Dim n As Long, n_path As Long, m As Long

Dim h As Double

Dim Z() As Double, S() As Double, AV() As Double
Dim asian() As Double, european() As Double

Dim V As Double, W As Double

Dim sdA As Double, sdE As Double

Dim output() As Double

’sigma: volatility

’K: strike price

’m_ave: # averaging times

’q: stock dividend

’r: interest rate

’S_0: stock price at time O
’T: time to maturity

n_path = 50000 ’# paths (replications) in the Monte Carlo simulation
h =T / m_ave ’time between successive averaging times

ReDim Z(n_path, m_ave)
ReDim S(n_path, m_ave)
ReDim AV(n_path)
ReDim asian(n_path)
ReDim european(n_path)
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ReDim output(3)

Open ’’c:\dokumenter\montecarlo\random_normal_seed_1773.txt’’ _
For Input As #2
For m = 1 To m_ave
For n = 1 To n_path
Input #2, Z(n, m)
Next n
Next m
Close #2

For n = 1 To n_path ’stock price simulation
S(n, 0) = S_0
AV(n) =0
For m = 1 To m_ave
S(n, m) = S(n, m - 1) * Exp((r - q - sigma "2 / 2) * h + _
sigma * Sqr(h) * Z(n, m)) ’simulated path
AV(n) = AV(n) + S(n, m)

Next m
AV(n) = AV(n) / m_ave ’average stock price
Next n
For n = 1 To n_path ’option price simulation

asian(n) = Exp(-r * T) * MaxFunc(AV(n) - K, 0)
european(n) = Exp(-r * T) * MaxFunc(S(n, m_ave) - K, 0)
Next n

=0
W=20
n =1 To n_path ’Monte Carlo simulation
V = asian(n) + V
W = european(n) + W
Next n
V =V / n_path ’Asian option price
W =W / n_path ’European option price

sdA
sdE
For n
sdA
sdE

I
N o O

1 To n_path
(asian(n) - V) "2 + sdA
(european(n) - W) "2 + sdE
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Next n

sdA = Sqr(sdA / (n_path - 1)) ’standard deviation _
(square root of sample variance)

sdE = Sqr(sdE / (n_path - 1))

output(0) =V

output(1) = sdA / Sqr(n_path) ’standard deviation of estimator
output(2) = W

output(3) = sdE / Sqr(n_path)

MonteCarlo = output()
End Function
Function MaxFunc(numberl As Double, number2 As Double) As Double

If numberl > number2 Then
MaxFunc = numberil

ElselIf numberl <= number2 Then
MaxFunc = number?2

Else
Stop

End If

End Function

Function BlackScholes(sigma, K, q, r, Su, T, u) As Double
Dim d1 As Double, d2 As Double

dl = (Log(Su / K) + (r - q + sigma "2 / 2) * (T - u)) / _
(sigma * Sqr(T - w))
d2 = d1 - sigma * Sqr(T - u)

BlackScholes = Su * WorksheetFunction.NormSDist(dl) - _
Exp(-r * (T - u)) * K * WorksheetFunction.NormSDist(d2)

End Function

A.1.2 Antithetic method

Function MonteCarloAntithetic(sigma As Double, K As Double, _
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m_ave As Integer, q As Double, r As Double, S_O As Double, _
T As Double) As Variant

Dim n As Long, n_path As Long, m As Long

Dim h As Double

Dim Z() As Double, S() As Double, AV() As Double
Dim asian() As Double, european() As Double

Dim V As Double, W As Double

Dim sdA As Double, sdE As Double

Dim output() As Double

’sigma: volatility

’K: strike price

‘m_ave: # averaging times

’q: stock dividend

’r: interest rate

’S_0: stock price at time O
’T: time to maturity

n_path = 50000 °’# paths (replications) in the Monte Carlo simulation
h =T / m_ave ’time between successive averaging times

ReDim Z(n_path, m_ave)
ReDim S(2 * n_path, m_ave)
ReDim AV(2 * n_path)

ReDim asian(2 * n_path)
ReDim european(2 * n_path)
ReDim output(3)

Open ’’c:\dokumenter\montecarlo\random_normal_seed_1773.txt’’ _
For Input As #2
For m = 1 To m_ave
For n = 1 To n_path
Input #2, Z(n, m)
Next n
Next m
Close #2

’stock price simulation
For n = 1 To n_path
S(n, 0) = S_0
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S(n + n_path, 0) = S_0
AV(n) =0
AV(n + n_path) =0
For m = 1 To m_ave
S(n, m) = S(n, m - 1) * Exp((r - q - sigma "2 / 2) * h + _
sigma * Sqr(h) * Z(n, m)) ’simulated path
S(n + n_path, m) = S(n + n_path, m - 1) * Exp((r - q - sigma
/ 2) * h + sigma * Sqr(h) * (-Z(n, m))) ’antithetic path
AV(n) = AV(n) + S(n, m)
AV(n + n_path) = AV(n + n_path) + S(n + n_path, m)
Next m

AV(n) = AV(n) / m_ave ’average stock price
AV(n + n_path) = AV(n + n_path) / m_ave
Next n

’option price simulation
For n = 1 To 2 * n_path
asian(n) = Exp(-r * T) * MaxFunc(AV(n) - K, 0)
european(n) = Exp(-r * T) * MaxFunc(S(n, m_ave) - K, 0)
Next n

V=20

W=20

For n = 1 To 2 * n_path ’Monte Carlo simulation
V = asian(n) + V
W = european(n) + W

Next n

V=V / (2 x n_path) >’Asian option price

W=W/ (2 x n_path) ’European option price

sdA =0

sdE = 0

For n = 1 To n_path
sdA = ((asian(n) + asian(n + n_path)) / 2 - V) "2 + sdA
sdE = ((european(n) + european(n + n_path)) / 2 - W) "2 + sdE

Next n

sdA = Sqr(sdA / (n_path - 1)) ’standard deviation _
(square root of sample variance)
sdE = Sqr(sdE / (n_path - 1))

output(0) =V

"2



A.1. VISUAL BASIC CODE 103

output (1) = sdA / Sqr(n_path) ’standard deviation of estimator
output(2) =W
output (3) = sdE / Sqr(a_path)

MonteCarloAntithetic = output()

End Function

A.1.3 Control variates

Function MonteCarloControl(sigma As Double, K As Double, _
m_ave As Integer, q As Double, r As Double, S_O As Double, _
T As Double) As Variant

Dim n As Long, n_path As Long, m As Long

Dim h As Double

Dim Z() As Double, S() As Double, AV() As Double, AVgeo() As Double

Dim asian() As Double, european() As Double, asian_geo() As Double, _
asian_new() As Double

Dim V As Double, W As Double, Vgeo As Double, Vnew As Double, _
Vgeo_true As Double

Dim sdA As Double, sdE As Double, sdAgeo As Double, sdAnew As Double

Dim output() As Double

’sigma: volatility

’K: strike price

‘’m_ave: # averaging times

’q: stock dividend

’r: interest rate

’S_0: stock price at time O
’T: time to maturity

n_path = 50000 ’# paths (replications) in the Monte Carlo simulation
h =T / m_ave ’time between successive averaging times

ReDim Z(n_path, m_ave)
ReDim S(n_path, m_ave)
ReDim AV(n_path)
ReDim AVgeo(n_path)
ReDim asian(n_path)
ReDim european(n_path)



104 APPENDIX A. MONTE CARLO SIMULATION

ReDim asian_geo(n_path)
ReDim asian_new(n_path)
ReDim output(8)

Open ’’c:\dokumenter\montecarlo\random_normal_seed_1773.txt’’ _
For Input As #2
For m = 1 To m_ave
For n = 1 To n_path
Input #2, Z(n, m)
Next n
Next m
Close #2

’stock price simulation
For n = 1 To n_path
S(n, 0) = S_0
AV(n) =0
Avgeo(n) =1
For m = 1 To m_ave
S(n, m) = S(n, m - 1) * Exp((r - q - sigma "2 / 2) * h + _
sigma * Sqr(h) * Z(n, m)) ’simulated path
AV(n) = AV(n) + S(n, m)
AVgeo(n) = AVgeo(n) * S(n, m)
Next m
AV(n) = AV(n) / m_ave ’average stock price
AVgeo(n) = AVgeo(n) ~“(1 / m_ave) ’geometric average
Next n

Vgeo_true = BS_geometric(sigma, K, m_ave, q, r, S_0, T) _
’Analytical solution

’option price simulation

For n = 1 To n_path
asian(n) = Exp(-r * T) * MaxFunc(AV(n) - K, 0)
asian_geo(n) = Exp(-r * T) * MaxFunc(AVgeo(n) - K, 0)

’european(n) = Exp(-r * T) * MaxFunc(S(n, m_ave) - K, 0)
asian_new(n) = asian(n) - asian_geo(n) + Vgeo_true
Next n

’Monte Carlo simulation
V=20
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Vgeo = 0

W =20

For n = 1 To n_path
V = asian(n) + V
Vgeo = asian_geo(n) + Vgeo
W = european(n) + W

Next n

V =V / n_path ’Asian option price

Vgeo = Vgeo / n_path ’Geometric Asian option price
W = W / n_path ’European option price

Vnew = V - Vgeo + Vgeo_true _
’The control variate is the geometric option

’sdA = 0
sdAgeo = 0
’sdE = 0
sdAnew = 0O

For n = 1 To n_path
’sdA = (asian(n) - V) "2 + sdA
sdAgeo = (asian_geo(n) - Vgeo) "2 + sdAgeo
’sdE = (european(n) - W) "2 + sdE
sdAnew = (asian_new(n) - Vnew) "2 + sdAnew
Next n
’sdA = Sqr(sdA / (n_path - 1)) ’standard deviation _
(square root of sample variance)
sdAgeo = Sqr(sdAgeo / (n_path - 1))
’sdE = Sqr(sdE / (n_path - 1))
sdAnew = Sqr(sdAnew / (n_path - 1))

output (0) = Vnew

output (1) = sdAnew / Sqr(n_path) ’standard deviation of estimator
output (2) = Vgeo

output (3) = sdAgeo / Sqr(n_path)

output (4) = Vgeo_true

‘output(5) =V

>output(6) = sdA / Sqr(n_path)

‘output(7) = W

>output(8) = sdE / Sqr(n_path)

MonteCarloControl = output()
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End Function

Function BS_geometric(sigma, K, m_ave, q, r, S_0, T) As Double

Dim h As Double, mg As Double, sg As Double, dl As Double, _
d2 As Double

h =T/ m_ave

mg = Log(S_0) + (r - q - sigma "2/ 2) *x (T + h) / 2

sg = Sqr(sigma "2 * h * (2 * m_ave + 1) * (m_ave + 1) / (6 * m_ave))
dl = (mg - Log(K) + sg ~2) / sg

d2 = dl - sg

BS_geometric = Exp(-r * T) * (Exp(mg + sg "2 / 2) * _
WorksheetFunction.NormSDist(d1) - _
K * WorksheetFunction.NormSDist (d2))

End Function



Appendix B

Turnbull and Wakeman

B.1 Moments

To calculate the moments of the true distribution of the average, we use

E[L;n] :E[(1+R1Ll+1)m], 7 = 1,2,...,?1, m = 1,2,‘..

For real numbers a and b

(a+b)* = a®+0b*+2ab
(a+0b)°® = a®+b*+ 3a°b+ 3ab’
(a+b)* = a*+b*+4a’b + 4ab® + 6a°b?

The first four moments of L, are then

E[L] = E[l1+ RiLi]
E[L]] = E[(1+ RiLi1)*

= E[+R!L}, +2R;L;1]

= 1+ B[R|E[L} ] + 2E[R]E[L;.]
E[L]] = E[(1+ RiLi1)"

= E[l+R}L} , +3RiLit1 +3R; L7 ]

(B.1)

= 1+ BRYEILY,) + BE[REILY,) + 3E[RJE[Ly) (B.T)

B[Lj] = E[(1+ RiLi1)']

El+R;L{, +4R;L;11 + AR}L}

+4AE[R]|E[Liy 1]
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i1t 6R§L?+1
1+ E[R;]E[L;, 1] + AB[RE[L}, |] + 6 E[R;] B

(B.8)
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B.2 Cumulants

For real numbers a and b

Iil(F)
K,Q(F)

K,g(F)

I€4(F)

a® + b* — 2ab
(a—b)? = a®—b*— 3a®b + 3ab?
(a—b)* = a*+b* —4a’b — 4ab® + 6a°b*

—~
S
|
=
~—
[\v]
I

E[Y] (B.9)
E[(Y - E[Y])?]

E[Y?+ E[Y]? = 2Y E[Y]]

E[Y? - E[Y]? (B.10)
E[(Y - E[Y])’]

E[Y? — E[Y) = 3Y?E[Y] + 3YE[Y)?]

E[Y?]| - E[Y)? - 3E[Y?|E[Y] + 3E[Y]?

E[Y?| +2E[Y]? - 3E[Y*E]Y] (B.11)
)] = 3(r2(F))*

* _4YPE[Y] - AYE[Y]? + 6Y2E[Y]?]

(B.12)

[Turnbull and Wakeman, 1991] and [Jarrow and Rudd, 1982] are inconsistent
regarding the definition of x4. The first two authors subtract 3xq(F") instead
of 3(k2(F))?, which is probably due to a typographical error. Numerically,
this doesn’t make any difference in our setup, because we have set the first
two moments equal in the two distributions.

B.3 Moment matching

Matching the moments of the approximating lognormal distribution to the
true distribution requires us to solve the following system of equations



B.4. LOGNORMAL DENSITY AND DERIVATIVES

a1 (F) = aq(G)
OéQ(F) = OéQ(G)

on(F) = exp(u + 1)
ay(F) = exp(2v + 2)?)

Ina;(F) =v+ 1N
Inay(F) = 2v + 2\2

Ina;(F) =v+ 1N
Inay(F) = 2(Inay (F) — I3%) +2X°

Ina;(F) =v+ 1N
M =Inay(F) —2Ina;(F)

Inay(F)=v+i(lnay(F) —2lna(F))
M =1Inay(F) —2Ina,(F)

v=2Ino(F)— $Inay(F)
M =Inay(F) —2Ina,(F)

B.4 Lognormal density and derivatives
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The density function g(z) for the lognormal distribution with parameters v

and \? is given by

1 1 —(V—lnx)Q)

— - . x>0
g(x) X Tﬂexp( e T

The first derivative of g with respect to x is

dg B 1 -1 —(v —Inx)?
d.T (J,‘) - )\ /_271' 1'2 eXp( 2)\2 )
1 1 —(v—Inxz)* -1 -1

- oy —ng)—
s ST gl — )4

(B.13)

(B.14)
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Set
$(z) = 2 _Alnx 1, >0 (B.15)
The second derivative is then
Tw) = (@) 2oy
= J@)20() + 9(2) (5 0() + 10/ (2))
o) =5 (0(0))? = 9(2)=50(a) + 9(2) 55—
= o) (60— 1) - 55)
— (o - D —2) - ) > 0 (B16)

B.5 Visual Basic code

Function TurnbullWakeman(sigma As Double, K As Double, _

n As Integer, q As Double, r As Double, S_O As Double, _
T As Double) As Variant
Dim sigSq As Double, h As Double, k2 As Double

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

’sigma:

’K:

R1 As Double, R2 As Double, R3 As
L1 As Double, L2 As Double, L3 As
j As Integer

Y1 As Double, Y2 As Double, Y3 As
Al As Double, A2 As Double, A3 As
my_approx As Double, sigSq_approx
c2 As Double, c3 As Double, c4 As
dl As Double, d2 As Double

price As Double

terml As Double, term2 As Double,

Double
Double

Double, R4 As
Double, L4 As

Double
Double

Double, Y4 As
Double, A4 As
As Double
Double

term3 As Double

Price2 As Double, Price3 As Double, PriceAllTerms As Double

output (8) As Double

volatility
strike price

‘n: # averaging times
’q: stock dividend
’r: interest rate
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’S_0: stock price at time O
’T: time to maturity

sigSq = sigma "2
h=T/n ’time increment between averaging dates
k2 = K *n / S_0 ’scaled strike price - (lower case) k in TW article

’PART 1 - calculate moments of true distribution
’i=T-(n-1) in TW article

R1 = LogMoment(1l, (r - q - sigSq / 2) * h, sigSq * h)

R2 = LogMoment(2, (r - q - sigSq / 2) * h, sigSq * h)

R3 = LogMoment(3, (r - q - sigSq / 2) * h, sigSq * h)

R4 = LogMoment(4, (r - q - sigSq / 2) * h, sigSq * h)

L1 =1 "L(T+1)=L(i+n)=1

L2 =1

L3 =1

4 =1

For j = (n - 1) To 1 Step -1 ’time i+j, i.e. time T to time T-n+2

’Priority L4,L3,L2,L1 important!
L4 =1+ R4 x4 +4 xR3 *x1L3+6 *xR2x*xL2+4 *xR1 xL1

L3 =1+R3 *xL3+ 3 *R2*1L2+ 3 %Rl x L1
L2 =1+ R2 *x L2 + 2 % Rl x L1
L1 =1+ R1 %L1

Next j

’Moments of true distribution

Y1 =R1 * L1
Y2 = R2 x L2
Y3 = R3 * L3
Y4 = R4 x L4

’PART 2 - calculate moments of approximating distribution
’match moments of approx. dist. to true dist.

my_approx = 2 * Log(Y1) - Log(Y2) / 2

sigSq_approx = Log(Y2) - 2 * Log(Y1)

’Moments of approximating distribution

Al = Y1 ’per construction
A2 = Y2 ’per construction
A3 = LogMoment (3, my_approx, sigSq_approx)
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A4 = LogMoment (4, my_approx, sigSq_approx)

’PART 3 - calculate option price

c2 =Y2 - Y1 "2 - (A2 - A1 "°2)

c3 =Y3+2 %Y1l "3 -3x*Y2x*xY1

c3 =c3 - (A3 +2 % A1 "3 - 3 * A2 * Al)

cd =Y4 -6 Y1 "4 -4 % Y3 %Yl + 12 x Y2 x Y1l "2 -3 *x Y2 "2

c4d =c4 - (AAd -6 %A1 "4 -4 % A3 *x Al + 12 * A2 * Al "2 - 3 * A2 "2)
cd =c4 + 3 *xc2 "2

dl = (-Log(k2) + my_approx + sigSq_approx) / Sqr(sigSq_approx)
d2 = d1 - Sqr(sigSq_approx)

price = Exp(my_approx + sigSq_approx / 2) *
WorksheetFunction.NormSDist(d1) - _
k2 * WorksheetFunction.NormSDist (d2)
’price = price + c2 / 2 * LogDensity(0, k2, my_approx, sigSq_approx)
’price = price - c3 / 6 * LogDensity(1, k2, my_approx, sigSq_approx)
’price = price + c4 / 24 * LogDensity(2, k2, my_approx, sigSq_approx)
price = price * Exp(-r * T) * S_.0 / n

’term1=0 in this setup since c2=0

terml = c2 / 2 * LogDensity(0, k2, my_approx, sigSq_approx) * _
Exp(-r * T) * S_.0 / n

term2 = -c3 / 6 * LogDensity(1l, k2, my_approx, sigSq_approx) * _
Exp(-r * T) * S0 / n

term3 = c4 / 24 * LogDensity(2, k2, my_approx, sigSq_approx) * _
Exp(-r * T) * S_.0 / n

Price2 = price + terml
Price3 = price + terml + term2

PriceAllTerms = price + terml + term2 + term3

output(0) = PriceAllTerms ’TW price

output(1) = Price3 ’No correction for diff. in 4. cumulants
output(2) = Price2 ’Levy price, no corr. for diff. in cumulants
output(3) = term?2 ’correction for diff. in 3. cumulants
output(4) = term3 >correction for diff. in 4. cumulants

output(5) = c3 / 6
output(6) = LogDensity(1, k2, my_approx, sigSq_approx)
output(7) = c4 / 24
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output (8) = LogDensity(2, k2, my_approx, sigSq_approx)
TurnbullWakeman = output()

End Function

Function LogMoment(m As Integer, my As Double, sigSq As Double) _
As Double
’Returns the m’th moment of logN(my, sigSq)

LogMoment = Exp(my * m + sigSq * m "2 / 2)
End Function

Function LogDensity(deriv As Integer, x As Double, my As Double, _
sigSq As Double) As Double
’Density function (and derivatives) of logN(my, sigSq)

Dim pi As Double, frac As Double, f As Double

pi = 4 * Atn(1)
frac = (my - Log(x)) / sigSq
f =1/ (8qr(2 * pi * sigSq) * x) * Exp(-(my - Log(x)) "2 / (2 * sigSq))

If deriv = O Then
’lognormal density f(x)
LogDensity = £
Elself deriv = 1 Then
>1. order derivative f’(x)
LogDensity = f / x * (frac - 1)
Elself deriv = 2 Then
’2. order derivative f’’(x)
LogDensity = f / x "2 * ((frac - 1) * (frac - 2) - 1 / sigSq)
Else

Stop
End If

End Function
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Appendix C

Milevsky and Posner

C.1 Gamma distribution

Proposition 9 states that

Glz|a, ) = G(%m, 1), V>0 (C.1)
g(zla, B) = %g(%\a, 1), Vx>0 (C.2)
g(z|a, B) = ﬁg(ﬂa -1,08), Vx>0, Va>1 (C.3)

Proof of Proposition 9. Using the definition of the density function
Glalo,p) = | glula,Bdu
0

- / D(a) Au* " exp(—B~"u)du

0
_ / D(a) '56% v exp(—v)dv
0
lval

= / IN{e! exp(—v)dv
0
= G(=|a,1), V>0
( ﬁ\ )
where we have made the change of variables v = % SO Z—Z = % This proves
(C.1). (C.2) follows from the above since
d d x
= — = —(G(Zla. 1
alo.B) = T(Clala.f)) = Z-(G(5a1)
1 =z
= —g(=|a,1), V>0
ﬂg( ﬁl )

115
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For oo >'1
INa)=(a—1)I'(a—-1)
which we use to prove (C.3)

glala,B) = T(a) 572" exp(~4"0)
- T e
= Gaophle- Ve o5
= ﬁ(%_l)g(x]a -1,06), Vx>0, Va>1

C.2 Reciprocal gamma distribution

C.2.1 Moments

Let X ~ I'(a,3) and Y = +. Y is reciprocally gamma distributed by

definition and its moments of order m < « are

BY") = Bl = [ mmolelo g)ds

<1 1
— /0 xm_lﬁ(a_l)g(ﬂa—l,ﬂ)dx

* 1 1
- /‘xWQB( 1xa—%(ﬂa_lﬂwx

g(x|a —m, B)dz

R

" (a—l)(a—2)...(a_m)/0 9(zla —m, B)dx

1
= C4
B"(a—1)(a—2)...(a — m) (G4)
where we have used (C.3) successively.
The first two (positive) moments of the reciprocal gamma distribution

are, cf. (C.4)

1
M, = m (C.5)
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and
1

F(a—1)(a—2)
We want to solve for a and [ in these equations. (C.5) and (C.6) can be
written as

(C.6)

M, =

1
— C.7
B VAT (C.7)
and
7 1 (C8)
My(a—1)(a—2) ‘
Inserting (C.7) into (C.8) gives
JH%(clz—l)Q - JVIg(a—ll)(a—Q)
)
Mf(Oz— 1) :MQ(Oé— 1) —MQ
T
(M12 - MQ)(Oé - 1) = —MQ
¢ Moy
(a—=1)= Mo M2
T
_ 2My—M?
= T
Inserting the last line but one into (C.7) gives
My |, My,— M?
— (M 2 yl_Z= T C.9
B=I 1M2—M12) M M, (€9)

All in all we have the parameters o and (3 expressed in terms of the first two
moments

oMy — M?

e B 1
“ My — M2 (C-10)
My — M2
b= g (G11)

C.2.2 Density and derivatives

The density function g of the reciprocal gamma distribution is

1 1

gr(y) = EQ(;)

P I 1
= EF(@) B (;) Yexp(—f 1;)
= T(a) sy texp(—p7y ), y>0 (C.12)
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where ¢ is the density function of the gamma distribution, cf. (6.1). Set

(e, ) = T(a)7'p (C.13)
hy) = vy lexp(=F7yY), ¥y>0 (C.14)
SO
gr(y) = c(a, B)h(y) (C.15)
The first derivative of h with respect to y is
) =y e8I+ (e - Dy ep( -5y
= (8 (ot )y )
= hy)B Ty = (a+ 1y ) (C.16)
The second derivative is then
d2h I -1, -2 1
d—yg(y) = KBy " —(a+y )
+h(y)(=267"y 7 + (a+ 1)y ~?)
= h(y)B 'y P —(a+ 1y )
+h(y)(=28"y P + (a+ 1)y )
= W)y + (a+ 1)y =267y (a+ 1y™)

+h(y)(=26"'y % + (o + 1)y’2)
= hy)(B %y~ =20 a+2)y~" + (o + 3a +2)y~*)(C.17)

From the above, the first and second order derivatives of gg, for y > 0, are

YR = o, BH ()

dy
= gr(W)(B 'y 2 —(a+1y ")
= (@) '(B Yy = (a+ 1)~y
cexp(—6 'y ) (C.18)

and

TIr() (o, BY(y)

dy?
gr(W) (B 2y~ =287 (a + 2)y ™ + (a* + 3a + 2)y™?)
F(a)—l{ﬁfanQ—aff) - Zﬁiail(a =+ 2):1/70(74
+(a* + 3a+2)p Yy 7} exp(—ﬁfly_l) (C.19)
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C.3 Moments

Formulae for the first two moments of the arithmetic average are given in
[Levy, 1992]. His average is

n

1
Levy n+ 1 g t; (C 0)
so we have to modify them to our specification of the average
1 n
A=-— 2 S, (C.21)
This is done as follows
Apyy = — ans— “ (S+zn:S)
Levy = 11 pare b n(n+1) 0 — b
SO n 1 “ SO n
— - = A .22
n+1+n+1nizlst1 n+1+n+1 (C.22)
Using (C.22), the first moment is
So n
ElAre] = E A
[Aseey) [n—|—1+n+1 )
So n
= ElA 2
n+1+n—i—1 [4] (C.23)
and the second moment is
S n
2 _ 0 2
E[ALevy] - E[(n+1 + n+1A) ]
SO 2 n 2 49 SO n
= F —)*AT+ 2 A
[(n+1) +(n+1) + n+1ln+1 )
- n—QE[AQ] + 28— E[A] + % (C.24)
T (n+1)? “(n+1)? (n+12 7
Inverting (C.23) and (C.24) gives
1
E[A] = —((n+ 1) E[Azen,] — S0) (C.25)
and
1
E[A%] = —((n+ 1)*B[A],,] — 250 E[A] — S7)

= ((n+ 1B

Levy

] —2So(n + 1)E[ALew] +53) (C.26)
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Levy’s formulae with £ =0, m =0, t =0, Ty = 0 (in his notation) are

So So - 1-— €(T7q)nh
ElAr ] = B Gl ) e — C.27
[Areus] n—|—1+n+1 1 — elr—a)h ( )
and
So So _ 1-— €(T7Q)nh
E[A? — (Y24 92V N2 (rmph 7
[ Levy] (n+1> + (n+1) € 1_6(r_q)h
S
+(n—i?1)2(a1 —ay + a3 — ay)
So So S0 19
= 2EArcvu| — — —
0 (2 [Apeny] — ) + (=) — 02+ a3 — )
S S
= - +0 - (2E[Aren] + n—+01(a1 —astas—as—1))  (C.28)
where

er—a)+to)h _ (2(r—q)+0*)(n+1h

ar = (1 — e(r=ah) (1 — eClr—a)+o)h) (C.29)
elr—a)(n+2)+0%)h _ (2(r—q)+0?)(n+1)h

e D R (C.30)
eBr—a)+o®)h _ ((r—q)(nt+2)+0?)h

as = (1 — @(T—q)h)(l _ 6(T—q+02)h) (C.Sl)
pAr—a)+202)h _ ,(2(r—q)+0?)(n+1)h

ay = (1 — elratoDh)(1 — Rir—a+o%h) (C.32)

The modified expressions for the moments are now obtained from (C.25) and
(C.26)

_ S0 regnl ="
and
2 _ 5%
E[A%] = F(al —as+az — aq) (C.34)

where the a; are given by (C.29)-(C.32).
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C.4 Visual Basic code

Function MilevskyPosner(sigma As Double, K As Double, n As Integer, _
q As Double, r As Double, S_O As Double, T As Double) As Double

Dim sigSq As Double, h As Double, g As Double

Dim A1 As Double, A2 As Double, A3 As Double, A4 As Double

Dim M1 As Double, M2 As Double

Dim alpha As Double, beta As Double

Dim G1 As Double, G2 As Double

Dim price As Double

’sigma: volatility

’K: strike price

‘n: # averaging times

’q: stock dividend

’r: interest rate

’S_0: stock price at time O
’T: time to maturity

sigSq = sigma "2
h=T/n ’time increment between averaging dates
g=1r-—4q

’adjusted Levy formula for 1. and 2. moment of average
If g = 0 Then
M1 =S_0
’continuous time M2
M2 =2 %S0 "2/ T "2 * (Exp(sigSq * T) - 1 - sigSq * T) / sigSq "2
Stop ’r = q (g = 0) not implemented in discrete time!
Else
M1 =S_0/n * Exp(g * h) * (1 - Exp(g * n * h)) / (1 - Exp(g * h))

A1 = (1 - Exp(g * b)) * (1 - Exp((2 x g + sigSq) * h))
A1 = (Exp((2 * g + sigSq) * h) - Exp((2 * g + sigSq) * _
(n+ 1) xh)) / A1
A2 = (1 - Exp(g * h)) * (1 - Exp((g + sigSq) * h))
A2 = (Exp((g * (n + 2) + sigSq) * h) - Exp((2 * g + sigSq) * _
(n+ 1) x h)) / A2
A3 = (1 - Exp(g * h)) * (1 - Exp((g + sigSq) * h))
A3 = (Exp((3 * g + sigSq) * h) - Exp((g * (n + 2) + sigSq) * h)) / A3
A4 = (1 - Exp((g + sigSq) * h)) * (1 - Exp((2 * g + sigSq) * h))
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A4 = (Exp((2 * g + sigSq) * 2 * h) - Exp((2 * g + sigSq) *

APPENDIX C. MILEVSKY AND POSNER

(n+1) *h)) / Ad

M2 =S_0 "2/ n "2 x (Al - A2 + A3 - A4)

End If

’Momentmatching

alpha = (2 * M2 - M1 ~2) / (M2 - M1 ~2)

beta = (M2 - M1 ~2) / (M2 * M1)

Gl = WorksheetFunction.GammaDist(1 / K, alpha - 1, beta, True)
G2 = WorksheetFunction.GammaDist(1 / K, alpha, beta, True)

price = Exp(-r * T) * (M1 * G1 - K * G2) ’Asian option price

MilevskyPosner = price

End Function

Function MilevskyPosnerContinuous(sigma As Double, K As Double, _

n

T
Dim
Dim
Dim
Dim
Dim

As
As

Integer, q As Double, r As Double, S_O As Double, _
Double) As Double

sigSq As Double

M1

As Double, M2 As Double, M2_sub As Double

alpha As Double, beta As Double

G1

As Double, G2 As Double

price As Double

sigSq = sigma "2

’The variable n is not used!
If r = q Then

M1 =S_0

M2 =2 %S0 "2/ T "2 * (Exp(sigSq * T) - 1 - sigSq * T) / sigSq "2
Else

M1 =S_0 *x (Exp((r - q) *T) - 1)

ML =ML/ ((r -q) xT)

M2_sub = (r - q + sigSq) * (2 *x r - 2 *x q + sigSq)

M2_sub = Exp((2 * (r - q) + sigSq) * T) / M2_sub
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M2 =1/ (2% (r-q + sigSqQ)
M2 = M2 - Exp((r - @ *T) / (r - q + sigSq)
M2 = M2 / (r - q) + M2_sub

M2 =M2 %2 %50 "2/ T "2
End If

’Momentmatching
alpha = (2 * M2 - M1 ~2) / (M2 - M1 ~2)
beta = (M2 - M1 "2) / (M2 * M1)

Gl = WorksheetFunction.GammaDist(1 / K, alpha - 1, beta, True)
G2 = WorksheetFunction.GammaDist(1 / K, alpha, beta, True)
price = Exp(-r * T) * (M1 * G1 - K * G2) ’Asian option price

MilevskyPosnerContinuous = price
End Function

Function MPimproved(sigma As Double, K As Double, n As Integer, _
q As Double, r As Double, S_O As Double, T As Double) As Double

’Uses the TW method in a MP setup

Dim sigSq As Double, h As Double, k2 As Double

Dim R1 As Double, R2 As Double, R3 As Double, R4 As Double

Dim L1 As Double, L2 As Double, L3 As Double, L4 As Double

Dim j As Integer

Dim Y1 As Double, Y2 As Double, Y3 As Double, Y4 As Double

Dim A1 As Double, A2 As Double, A3 As Double, A4 As Double

Dim alfa As Double, beta As Double

Dim c2 As Double, c3 As Double, c4 As Double

Dim G1 As Double, G2 As Double

Dim price As Double

’sigma: volatility

’K: strike price

‘n: # averaging times
’q: stock dividend
’r: interest rate

’S_0: stock price at time O
’T: time to maturity
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sigSq = sigma "2
h=T/n ’time increment between averaging dates
k2 =n * K/ S_0 >(lower case) k in TW article

’PART 1 - calculate moments of true distribution
’i=T-(n-1) in TW article

R1 = LogMoment(1l, (r - q - sigSq / 2) * h, sigSq * h)

R2 = LogMoment(2, (r - q - sigSq / 2) * h, sigSq * h)

R3 = LogMoment(3, (r - q - sigSq / 2) * h, sigSq * h)

R4 = LogMoment(4, (r - q - sigSq / 2) * h, sigSq * h)

L1 =1 "L(T+1)=L(i+n)=1

L2 =1

I3 =1

4 =1

For j = (n - 1) To 1 Step -1 ’time i+j, i.e. time T to time T-n+2

’Priority L4,L3,L2,L1 important!
L4 =1+R4 x14 +4 xR3 xL3+6 *xR2x*xL2+ 4 *x Rl xL1

I3 =1+R3 *xL3+3 *R2 *L2+ 3 %Rl x L1
L2 =1+ R2 L2 + 2 * Rl % L1
L1 =1+R1l x L1

Next j

’Moments of true distribution

Y1 = R1 x L1
Y2 = R2 x L2
Y3 = R3 * L3
Y4 = R4 x 14
’PART 2 - calculate moments of approximating distribution

’match moments of approx. dist. to true dist.
alfa = (2 * Y2 - Y1 "2) / (Y2 - Y1 "2)
beta = (Y2 - Y1 "2) / (Y1 * Y2)

’Moments of approximating distribution

Al = Y1 ’per construction
A2 = Y2 ’per construction
A3 = RGMoment(3, alfa, beta)

Ad

RGMoment (4, alfa, beta)

’PART 3 - calculate option price
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c2 =Y2 -Y1 "2 - (A2 - A1l ~2)

c3=Y3+2 %Y1l "3 -3=x%xY2%*Y1

c3 =c3 - (A3 +2 % A1 "3 -3 % A2 *x Al)

cd =Y4 -6 *%xY1 "4 -4 x%xY3 %Y1+ 12 % Y2 *x Y1l "2 -3 *x Y2 "2

cd =cd - (A4 -6 *x A1 "4 -4 x A3 * A1 + 12 * A2 * A1l "2 - 3 x A2 ~2)
cd =cd4 + 3 xc2 "2

G1 = WorksheetFunction.GammaDist(1 / k2, alfa - 1, beta, True)
G2 = WorksheetFunction.GammaDist(1 / k2, alfa, beta, True)

price = Y1 * Gl - k2 * G2

price = price + c2 / 2 * RGDensity(0, k2, alfa, beta)
price = price - ¢3 / 6 * RGDensity(1l, k2, alfa, beta)
price = price + c4 / 24 * RGDensity(2, k2, alfa, beta)
price = price * Exp(-r * T) * S_.0 / n

MPimproved = price
End Function

Function RGMoment(m As Integer, alfa As Double, _
beta As Double) As Double
’Returns the m’th moment of reciprocal gamma(alfa, beta)

If alfa > m Then
If m = 1 Then
RGMoment = 1 / (beta * (alfa - 1))
ElselIf m = 2 Then
RGMoment = 1 / (beta "2 * (alfa - 1) * (alfa - 2))
ElselIf m = 3 Then
RGMoment = 1 / (beta "3 * (alfa - 1) * (alfa - 2) * (alfa - 3))
Elself m = 4 Then
RGMoment = 1 / (beta "4 * (alfa - 1) * (alfa - 2) * _
(alfa - 3) * (alfa - 4))
Else
Stop
End If
Else
Stop
End If
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End Function

Function RGDensity(deriv As Integer, x As Double, _
alfa As Double, beta As Double) As Double
’Density function (and derivatives) of reciprocal gamma(alfa, beta)

Dim f As Double

f = beta “(-alfa) * x “(-alfa - 1) * Exp(-1 / (beta * x)) _
/ Exp(WorksheetFunction.Gammaln(alfa))

If deriv = O Then

’reciprocal gamma density f(x)

RGDensity = f
Elself deriv = 1 Then

’1. order derivative f’(x)

RGDensity = f * (beta ~(-1) * x ~(-2) - (alfa + 1) * x “(-1))
Elself deriv = 2 Then

’2. order derivative f’’(x)

RGDensity = f * (beta “(-2) * x “(-4) - 2 * beta “(-1) * _

(alfa + 2) * x ~(-3) + (alfa "2 + 3 * alfa + 2) * x ~(-2))

Else

Stop
End If

End Function
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Vorst

D.1 Visual Basic code

Function Vorst92(sigma As Double, K As Double, n As Integer, _

q As Double, r As Double, S_O As Double, T As Double) As Variant
Dim sigSq As Double, h As Double
Dim meanGeo As Double, varGeo As Double, EA As Double, EG As Double
Dim d1 As Double, d2 As Double, priceGeo As Double
Dim upBound As Double
Dim Knew As Double, dlnew As Double, d2new As Double, price As Double
Dim output(2) As Double

’sigma: volatility

’K: strike price

‘n: # averaging times
’q: stock dividend
’r: interest rate

’S_0: stock price at time O
’T: time to maturity

sigSq = sigma "2
h=T/n ’time increment between averaging dates

’Mean and variance of logarithm of geometric average
meanGeo = Log(S_0) + (r - q - sigSq / 2) = (T + h) / 2
varGeo = sigSq * (h + (T - h) * (2 *xn - 1) / (6 * n))

’Mean of arithmetic and geometric averages
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EA=S0/n* Exp((r - q *h) * (1 - Exp((r - @ *n * h)) _
/ (1 - Exp((r - @ * h))
EG = Exp(meanGeo + varGeo / 2)

’Price of geometric Asian option

dl = (meanGeo - Log(K) + varGeo) / Sqr(varGeo)

d2 = d1 - Sqr(varGeo)

priceGeo = Exp(-r * T) * (EG * WorksheetFunction.NormSDist(dl) - _
K * WorksheetFunction.NormSDist(d2))

upBound = priceGeo + Exp(-r * T) * (EA - EG)

’Approximate price of Asian option [Vorst, 1992]

Knew = K - (EA - EG) ’Adjusted strike price

dlnew = (meanGeo - Log(Knew) + varGeo) / Sqr(varGeo)

d2new = dilnew - Sqr(varGeo)

price = Exp(-r * T) * (EG * WorksheetFunction.NormSDist(dlnew) - _
Knew * WorksheetFunction.NormSDist(d2new))

output(0) = price
output (1) = upBound >upper bound
output(2) = priceGeo >lower bound

Vorst92 = output

End Function



Appendix E

Curran

E.1 Visual Basic code

Function Curran94(sigma As Double, K As Double, n As Integer, _
q As Double, r As Double, S_O As Double, T As Double) As Variant

Dim sigSq As Double, h As Double

Dim meanG As Double, varG As Double

Dim i As Integer

Dim meanS() As Double, varS() As Double, covSG() As Double

Dim d1() As Double, d2 As Double

Dim I1 As Double, I2 As Double, c2 As Double

Dim y As Double, EAG As Double, delta As Double

Dim price As Double

Dim output(1) As Double

’sigma: volatility

’K: strike price

‘n: # averaging times

’q: stock dividend

r: interest rate

’S_0: stock price at time O
’T: time to maturity

ReDim meanS(n)
ReDim varS(n)
ReDim covSG(n)
ReDim di(n)
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sigSq = sigma "2
h=T/n ’time increment between averaging dates

’Mean and variance of logarithm of geometric average 1n(G)
meanG = Log(S_0) + (r - q - sigSq / 2) * (T + h) / 2
varG = sigSq * h * (2 *xn+ 1) x (n + 1) / (6 * n)

For i =1 Ton
’Mean and variance of logarithm of stock price 1n(S)
meanS(i) = Log(S_0) + (r - q - sigSq / 2) * 1 x h
varS(i) = sigSq * i * h
’Covariance between 1n(S) and 1n(G)
covSG(i) = sigSq * h * ((2*n + 1) *1i -1 "2) / (2 * n)
Next i

’Calculate L to replace K as the lower limit in the integral
delta = 10 "-6 ’stepsize

y = Log(K) ’initial value (which is too high)

EAG = CondMean(y, sigma, K, n, q, r, S_0, T)

Do While EAG > K

y =y - delta

EAG = CondMean(y, sigma, K, n, q, r, S_0, T)
Loop

’At this point EAG < K so we use the last but one y
y =y + delta
L = Exp(y)

’Calculate option price
I1 =0
For i =1Ton
d1(i) = (meanG - Log(L) + covSG(i)) / Sqr(varG)
I1 = I1 + Exp(meanS(i) + varS(i) / 2) _
* WorksheetFunction.NormSDist(d1(i))

Next i
I1=1I1/n
d2 = (meanG - Log(L)) / Sqr(varG)

12 K * WorksheetFunction.NormSDist (d2)
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price = Exp(-r * T) * (I1 - I2)

output (0)
output (1)

price
L

Curran94 = output()

End Function

Function CondMean(y As Double, sigma As Double, K As Double, n As Integer, _

q As Double, r As Double, S_O As Double, T As Double) As Double
Dim sigSq As Double, h As Double
Dim meanG As Double, varG As Double
Dim i As Integer
Dim meanS() As Double, varS() As Double, covSG() As Double
Dim result As Double

ReDim meanS(n)
ReDim varS(n)
ReDim covSG(n)

sigSq = sigma "2
h=T/n ’time increment between averaging dates

’Mean and variance of logarithm of geometric average 1n(G)
meanG = Log(S_0) + (r - q - sigSq / 2) *x (T + h) / 2
varG = sigSq * h * (2 *xn+ 1) x (n + 1) / (6 * n)

For i =1Ton
’Mean and variance of logarithm of stock price 1n(S)
meanS(i) = Log(S_0) + (r - q - sigSq / 2) * 1 xh
varS(i) = sigSq * i * h
’Covariance between 1n(S) and 1n(G)
covSG(i) = sigSq * h * ((2*n + 1) *x1i -1 "2) / (2 * n)
Next i

result = 0
For i =1Ton
result = result + Exp(meanS(i) + (y - meanG) * covSG(i) / varG _
+ (varS(i) - covSG(i) "2 / varG) / 2)
Next i
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result = result / n
CondMean = result

End Function
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